

ISRO

Previous Year Paper Scientist ME 2016

Test Prime

ALL EXAMS, ONE SUBSCRIPTION

70,000+ Mock Tests

600+ Exam Covered

Personalised Report Card

Previous Year Papers

Unlimited Re-Attempt

500% Refund

ATTEMPT FREE MOCK NOW

Test Prime

ALL EXAMS, ONE SUBSCRIPTION

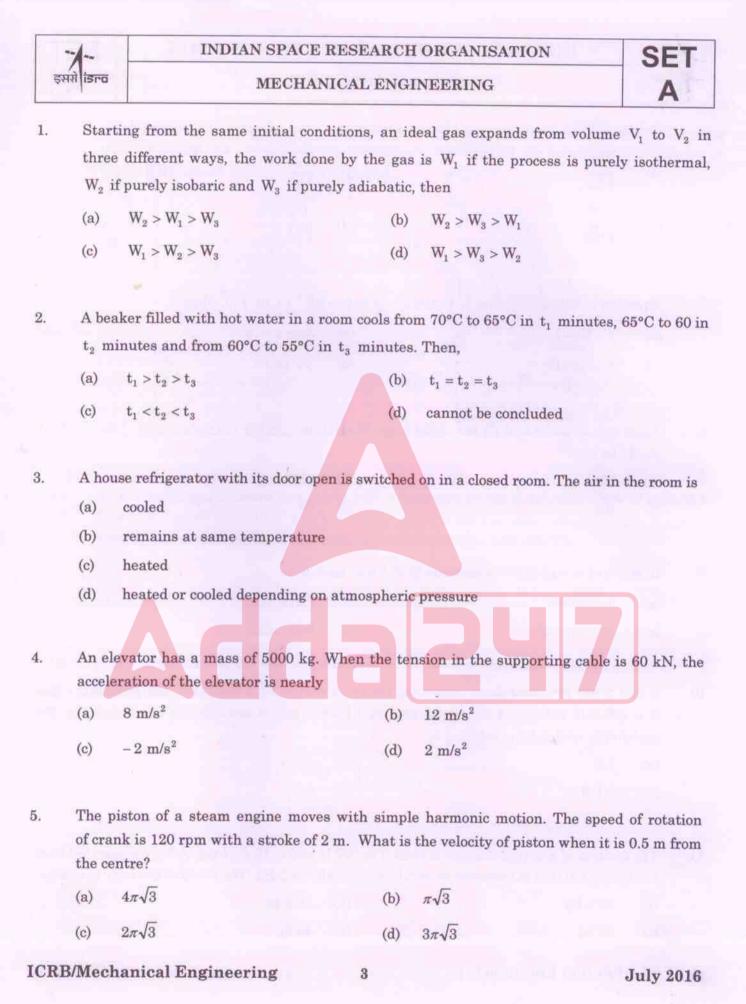
70,000+ Mock Tests

600+ Exam Covered

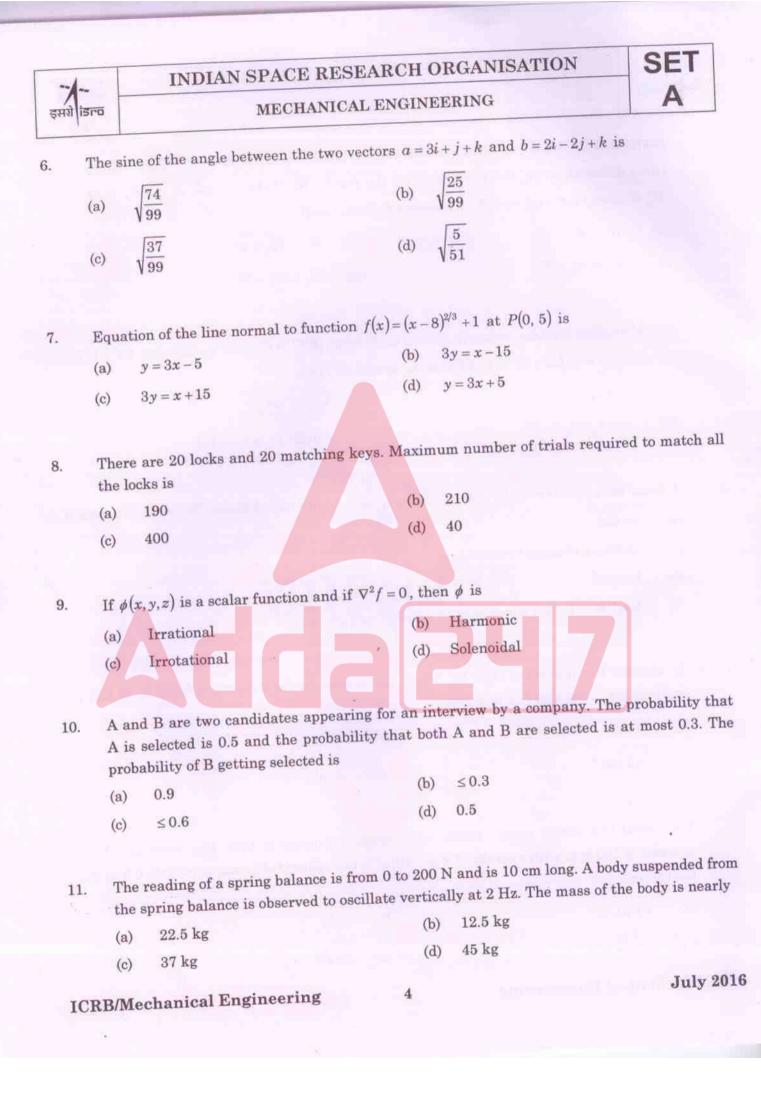
Personalised Report Card

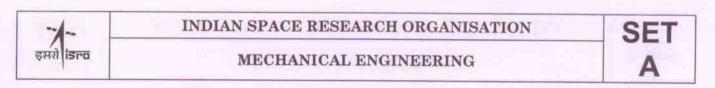
Previous Year Papers

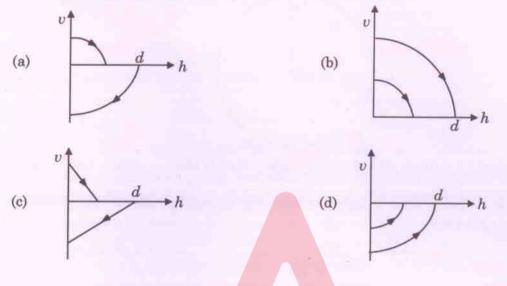
Unlimited Re-Attempt


500% Refund

ATTEMPT FREE MOCK NOW

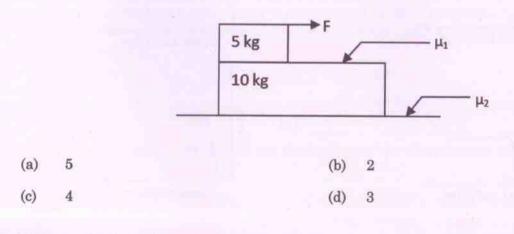






12. A ball is dropped vertically from a height d above the ground. It hits the ground and bounces up to a height d/2. Neglecting the subsequent motion and air resistance, its velocity (v) varies with height (h) above the ground as

13. A 10 kW drilling machine is used to drill a bore in a small aluminium block of mass 8 kg. How much is the rise in temperature of the block in 2.5 minutes, assuming 50% of power is used up in heating the block? (specific heat of aluminum : 0.91 J/(g°C))

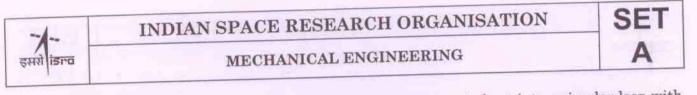

(b)

- (a) 50°C
- (c) 103°C

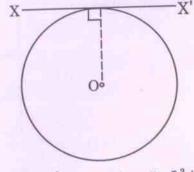
(d) 227°C

206°C

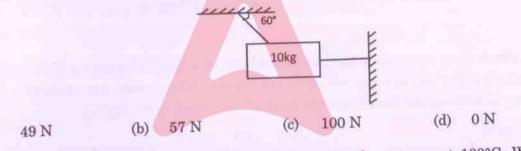
14. In the figure shown, the minimum ratio of μ_1 / μ_2 so that the masses move together with the application of force F is

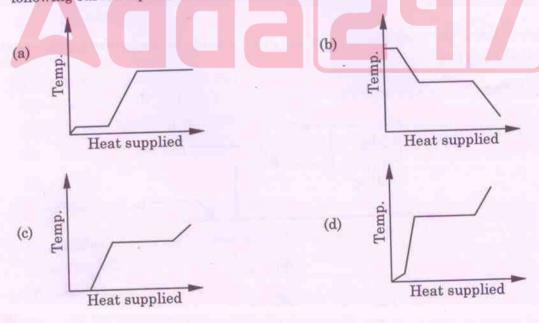

ICRB/Mechanical Engineering

5



(a)



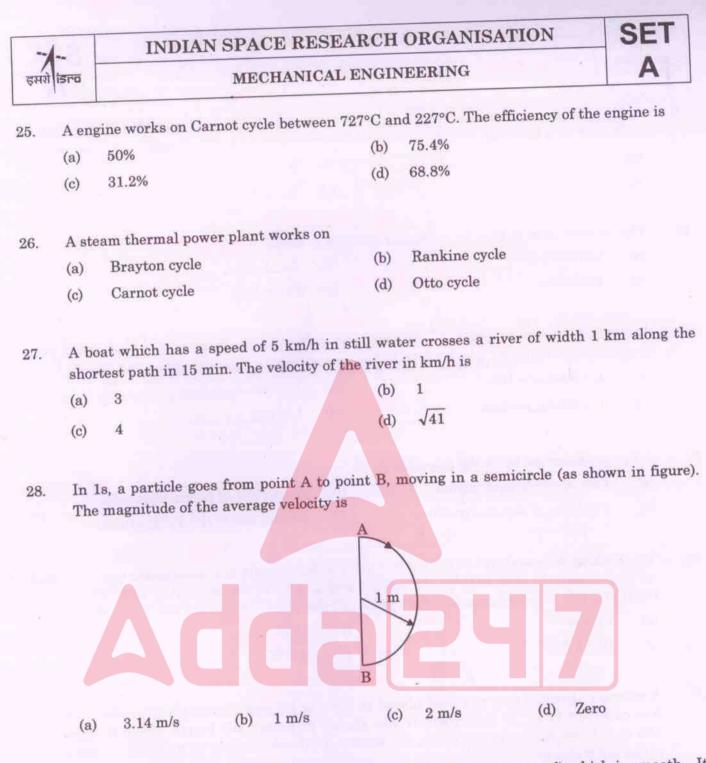

15. A thin wire of length L and uniform linear mass density ρ is bent into a circular loop with centre O as shown in figure. The moment of inertia of the loop about the axis XX' is

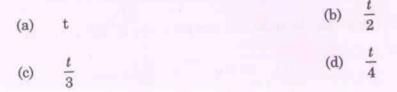
- (a) $\rho L^3 / 16 \pi^2$ (b) $\rho L^3 / 8 \pi^2$ (c) $5 \rho L^3 / 16 \pi^2$ (d) $3 \rho L^3 / 8 \pi^2$
- 16. A 10 kg mass is hung from 2 light, inextensible strings as shown. The tension in the horizontal string is nearly

17. A block of ice at -10°C is slowly heated and converted to steam at 100°C. Which of the following curves represent the phenomena qualitatively?

6

ICRB/Mechanical Engineering



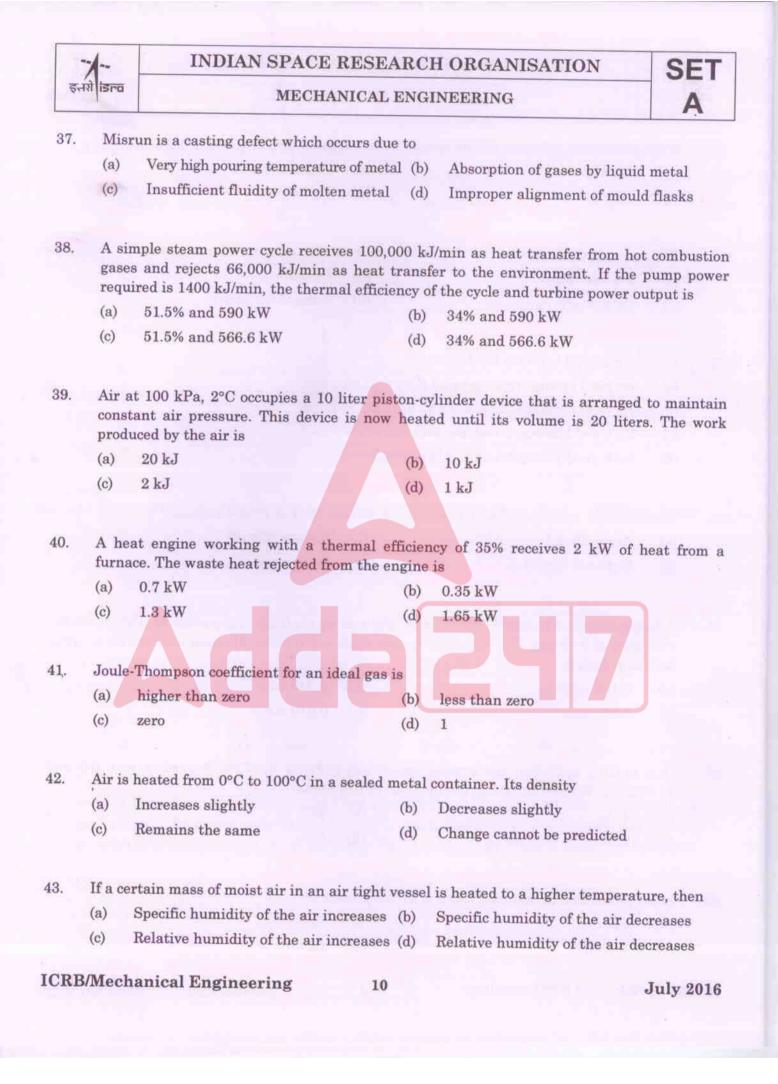

इसरो डिल्व		281	INDIAN S	PACE RESEAR	RCH	ORGANISATION	SET
		MECHANICAL ENGINEERING				A	
.8.		e temperat ased by a fa		sun is doubled,	the	rate of energy received	on earth will b
	(a)	2			(b)	4	
	(c)	8			(d)	16	
9.	The t	ransmissio	n of heat by	molecular collisi	ion is	called	
	(a)	Convection	n		(b)	Conduction	
	(c)	Radiation			(d)	Ionisation	
0.						ade of same material are ls conduct most heat per	
	(a)	L = 50 cm,	r = 1 cm		(b)	L = 2 cm, r = 0.5 cm	
	(c)	L = 100 cm	$\mathbf{r} = 2 \mathrm{cm}$		(d)	L = 3 cm, r = 1 cm	
1.	A the	ermometer v	vorks on the	principle of			
	(a)	Law of sta	able equilibr	ium	(b)	Zeroth law of thermody	namics
	(c)	First law o	of thermody	namics	(d)	Second law of thermody	namics
2.	30°C,	, respective.	ly. The COI	-	ator :	denser coils of a refrigera is 0.85 of the maximum vill be	
	mput				(b)	9 kW	
	(a)	7.6 kW					
		7.6 kW 10.2 kW			(d)	12 kW	
3.	(a) (c) A me was o 250 r	10.2 kW ercury therm observed to	be 10 mm; placed in tap	; when it was p	melt	12 kW ting ice and the length o l in steam, the length o f the column was 58 mm.	f the column wa
3.	(a) (c) A me was o 250 r	10.2 kW ercury therm observed to nm. When p	be 10 mm; placed in tap	; when it was p	melt	ting ice and the length o l in steam, the length o	f the column wa
3.	(a) (c) A me was of 250 r of the	10.2 kW ercury therm observed to nm. When p e tap water	be 10 mm; placed in tap	; when it was p o water, the leng	melt laced gth of	ting ice and the length o l in steam, the length o f the column was 58 mm.	f the column wa
	 (a) (c) A meeting 250 r of the (a) (c) The a 	10.2 kW ercury therm observed to nm. When p e tap water 24.2°C 38.4°C	be 10 mm; placed in tap is steam (at 10	; when it was p o water, the leng	melt laced gth of (b) (d)	ting ice and the length o l in steam, the length o f the column was 58 mm. 20°C	f the column wa The temperatur
3.	 (a) (c) A meeting 250 r of the (a) (c) The a 	10.2 kW ercury therm observed to nm. When p e tap water 24.2°C 38.4°C amount of s	be 10 mm; placed in tap is steam (at 10	; when it was p o water, the leng	melt laced gth of (b) (d)	ting ice and the length of l in steam, the length of f the column was 58 mm. 20°C 4.14°C	f the column wa The temperatur
	(a) (c) A me was of 250 r of the (a) (c) The a 60°C	10.2 kW ercury therm observed to nm. When p e tap water 24.2°C 38.4°C amount of s to 100°C is	be 10 mm; placed in tap is steam (at 10	; when it was p o water, the leng	melt laced gth of (b) (d)	ting ice and the length of l in steam, the length of f the column was 58 mm. 20°C 4.14°C see the temperature of 20	f the column wa The temperatur

29. A block is made to slide down an inclined plane (30° with horizontal) which is smooth. It starts sliding from rest and takes a time 't' to reach the bottom of the plane. An identical body is freely dropped from the same point. The time the body takes to reach the bottom is

ICRB/Mechanical Engineering

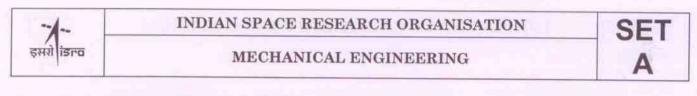
8

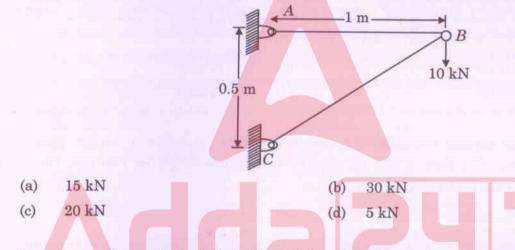
-/		INDIAN SPACE RESEARCH ORGANISATION			
<u>4</u> 5	वनहों फ़ि	MECHANICAL ENGINEERING			A
30.	Wha	t parameter will remain co	nstant in a thrott	ling process?	10 C
	(a)	Entropy	(b)	Temperature	
	(c)	Pressure	(d)	Enthalpy	
1.	The	main objective of 'shot peen	uing' is to improve	which property of metal	parts
	(a)	Surface finish	(b)	Ductility	
	(c)	Fatigue strength	(d)	None of the above	
2.	When	n a material is strain harde	ened?		
	(a)	its yield strength reduces	and ductility inc	reases	
	(b)	its yield strength increas	es-and ductility re	educes	
	(c)	both yield strength and d	uctility increases		
	(d)	both yield strength and d	uctility reduces		
3.	Whic	h thread is more suited in	power screw to ta	ke load on both direction	s?
	(a)	Acme thread	(b)	Square thread	
	(c)	Buttress thread	(d)	None of these	
4.	clear	e is specified as $\phi 50^{(+0.050/-6)}$ ance of 0.02 mm. The toler and shaft is			
	(a)	0.100 mm	(b)	0.030 mm	
	100100	0.000	1000	0.000	
	(c)	0.080 mm	(d)	0.070 mm	
5.	In a	cutting operation the cut 350 in Taylor's equation, th	tting speed was	reduced by 20%. Assum	ing $n = 0.5$ as
5.	In a	cutting operation the cut	tting speed was	reduced by 20%. Assum	ing $n = 0.5$ as
5.	In a $C = 3$	cutting operation the cut 350 in Taylor's equation, th	tting speed was he increase in tool	reduced by 20%. Assum life is	ing $n = 0.5$ and
	In a C = 3 (a) (c)	cutting operation the cut 350 in Taylor's equation, th 46%	tting speed was ne increase in tool (b) (d)	reduced by 20%. Assum life is 48% 56%	ing $n = 0.5$ as
5.	In a C = 3 (a) (c)	cutting operation the cut 350 in Taylor's equation, th 46% 59%	tting speed was ne increase in tool (b) (d)	reduced by 20%. Assum life is 48% 56%	ing $n = 0.5$ at


9

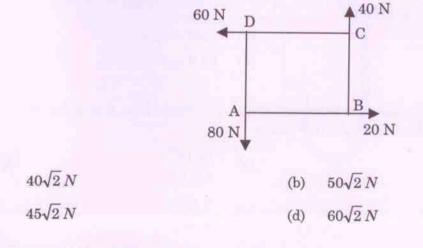
July 2016

GET IT ON Google Play




44. Air is accelerated isentropically from 100 m/s to 300 m/s in a nozzle. If the temperature at the inlet is 127°C, the inlet Mach number is (take R = 287J/(kg K) and specific heat ratio = 1.4)

(a)	0.249	(b)	0.442
(c)	0.747	(d)	0.333

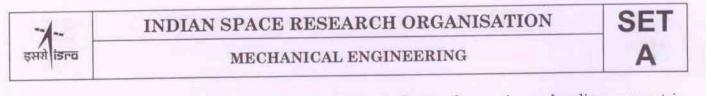

45. Two equal forces are acting at a point with an angle of 60° between them. If the resultant force is equal to $60\sqrt{3}$, what is the magnitude of each force?

(a)	30	(b)	50
(c)	40	(d)	60

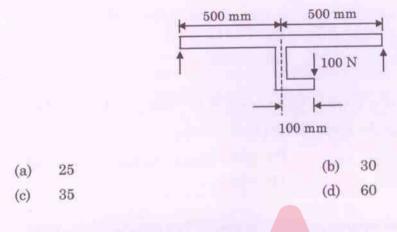
46. A two member truss ABC is configured as shown in figure. The force in the member AB is

47. Four forces of magnitudes 20 N, 40 N, 60 N and 80 N are acting respectively along the four sides of a square ABCD as shown in figure. The magnitude of resultant is

ICRB/Mechanical Engineering


(a)

(c)


11

48. In a simply supported beam loaded as shown in figure, the maximum bending moment in Nm is

49. Two steel rails each of 12 m length are laid with a gap of 1.5 mm at ends at a temperature of 24°C. The thermal stress produced at a temperature of 40°C is (take $E = 2 \times 10^5 \text{ N/mm}^2$, coefficient of thermal expansion = $12 \times 10^{-6} / ^{\circ}$ C)

(a)	10.5 N/mm ²	(b)	12.5 N/mm^2
(c)	13.4 N/mm ²	(d)	15.5 N/mm ²

50. An aluminum tensile test specimen has a diameter, $d_o = 25 \text{ mm}$ and a gauge length of $L_o = 250 \text{ mm}$. If a force of 175 kN elongates the gauge length by 1.25 mm, the modulus of elasticity of the material is nearly

- (a) 71 GPa
- (c) 142 GPa

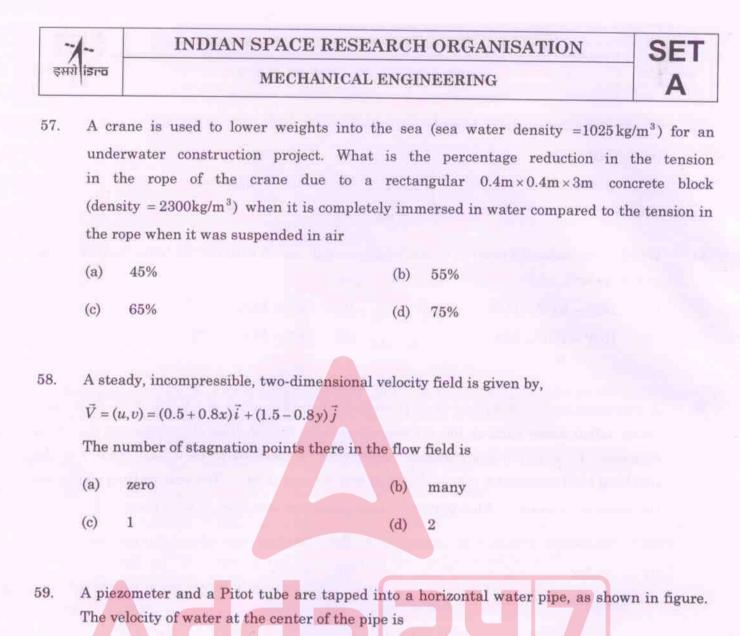
(b) 71 MPa (d) 142 MPa

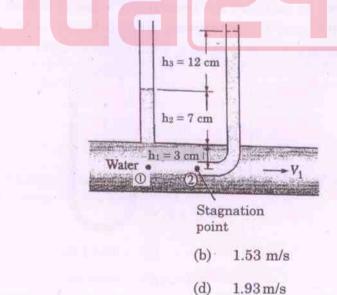
- 51. A tubular shaft, having an inner diameter of 30 mm and an outer diameter of 40 mm, is to be used to transmit 80 kW of power. The speed of rotation of the shaft so that the shear stress will not exceed 50 MPa is
 - (a) 29.6 rpm (b) 3557.4 rpm
 - (c) 1778.7 rpm (d) 59.2 rpm
- 52. A cantilever beam of length L is subjected to a concentrated load P at a distance of L/3 from the free end. The deflection at the free end is

(a)	$\frac{1}{3} \frac{PL^3}{EI}$	(b)	$\frac{14}{81} \frac{PL^3}{EI}$
(c)	$\frac{7}{18} \frac{PL^3}{EI}$	(d)	$\frac{1}{2} \frac{PL^3}{EI}$

ICRB/Mechanical Engineering

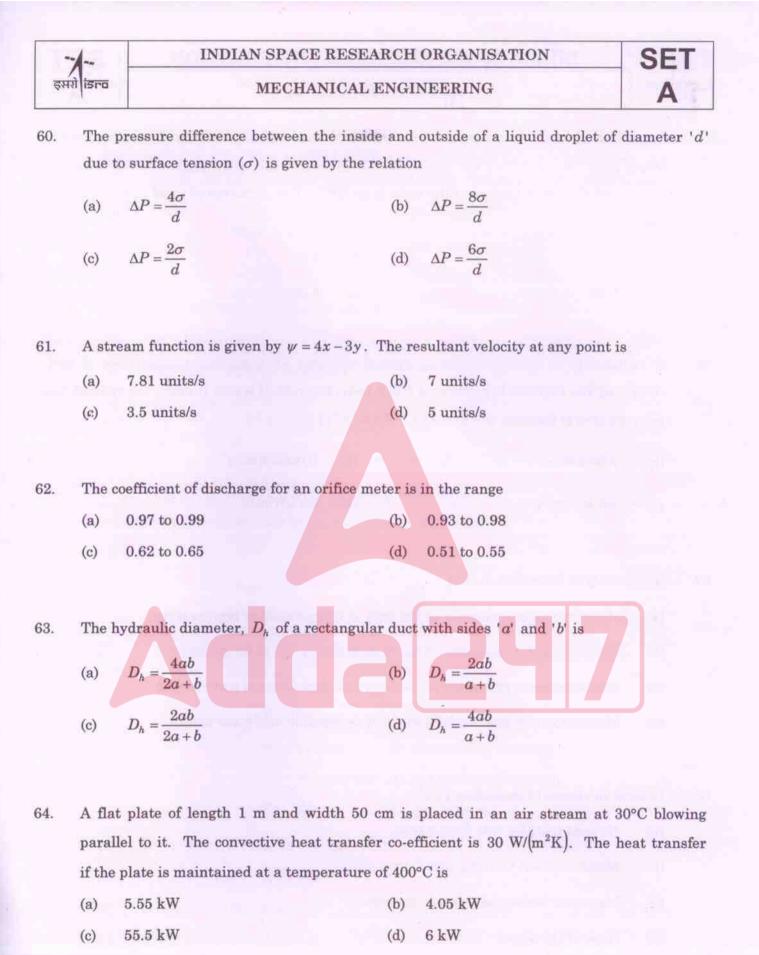
12





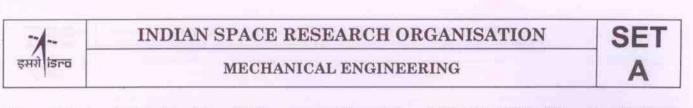
इसरो		INDIAN SH	ACE RESEARCH OF	GANISATION	SET	
इसरो डिसरू		ME	MECHANICAL ENGINEERING			
3.	Wha	t is the common surface l	nardening treatment in	steel?		
	(a)	Carburizing	(b) T	empering		
	(c)	Quenching	(d) N	lone of the above		
4.		ch of the following order o at order?	of crystal structure will	match with metals Iron	– Copper – Zir	
	(a)	BCC - HCP - FCC	(b) F	CC - BCC - HCP		
	(c)	HCP - FCC - BCC	(d) B	CC - FCC - HCP		
5.	using diam resul	sistance spot-welding ope g 12000 amps current f eter at the contacting s ting weld nugget is 6 mm netal is 12 J/mm ³ . What	for a duration of 0.20 urfaces. Resistance is n in diameter and 2.5 r	second. The electrode s assumed to be 0.0001 nm thick. The unit me	s are 6 mm i l ohms and th elting energy fo	
	(a)	29.4%	(b) 7	0.6%		
	(c)	58.8%	(d) 4	1.2%		
3.	speci	anometer is used to mea fic gravity of 0.85 and t local atmospheric press	he manometer column	height is 55 cm, as si	hown in figure	
			$P_{\rm atm} = 961$			
				t		
			P = ? $h = 5$	5 cm.		
			SG = 0.85)		
	(a)	4.6 kPa	(b) 98	3.6 kPa		
	(a) (c)	4.6 kPa 100.6 kPa		3.6 kPa 00 kPa		
	(c)		(d) 20		July 201	

(a) 2.4 m/s


(c) 2.07 m/s

ICRB/Mechanical Engineering

14



ICRB/Mechanical Engineering

15

65. It is required to insulate a kitchen oven with cork board (K=0.043 W/(m K)) so that the heat losses from the oven does not exceed 400 W/m² when the inner surface of the oven is at 225°C and the outer surface of the oven is at 40°C. The thickness of insulation required is nearly

(a)	1 cm	(b)	$2 \mathrm{cm}$
(c)	3 cm	(d)	4 cm

66. A radiator in a domestic heating system operates at a surface temperature of 55°C. Assuming the radiator behaves as a black body, the rate at which it emits the radiant heat per unit area is (assume $\sigma = 5.67 \times 10^{-8}$ W/(m²K⁴))

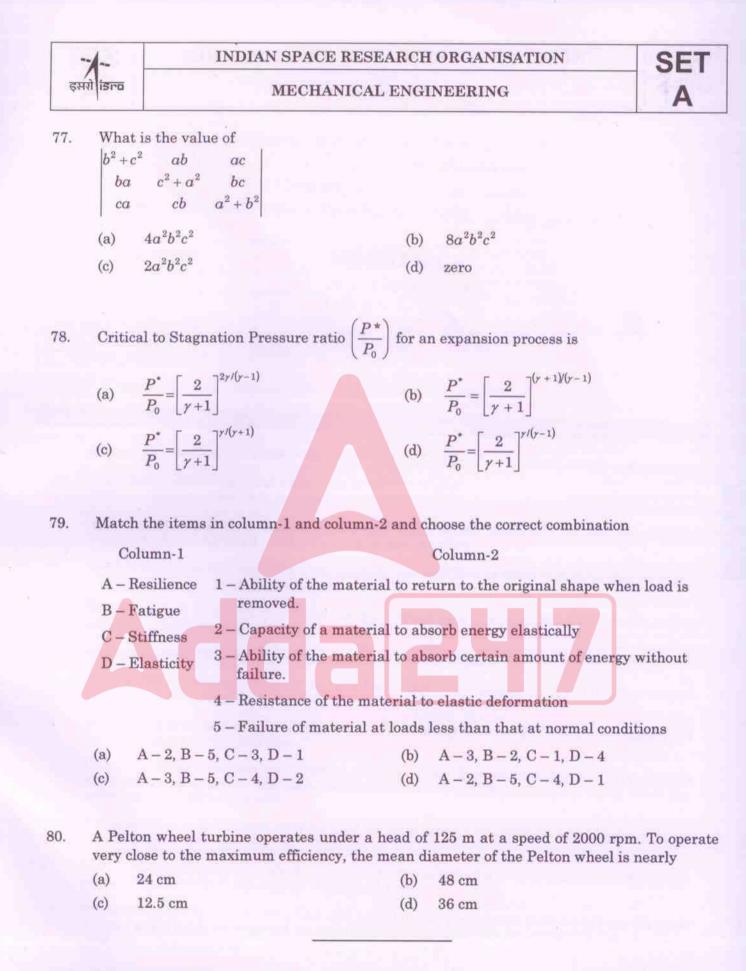
(a)	0.66 kW/m ²	(b)	0.0005 kW/m^2
(c)	0.5 kW/m ²	(d)	66 kW/m ²

- 67. A grey body is defined such that
 - (a) Monochromatic emissivity of the body is independent of temperature
 - (b) Monochromatic emissivity of the body is dependent of temperature
 - (c) Monochromatic emissivity of the body is independent of wave length
 - (d) Monochromatic emissivity of the body is dependent of wave length
- 68. Critical thickness of insulation yields
 - (a) No heat transfer rate from a pipe
 - (b) Minimum heat transfer rate from a pipe
 - (c) Maximum heat transfer rate from a pipe
 - (d) None of the above

ICRB/Mechanical Engineering

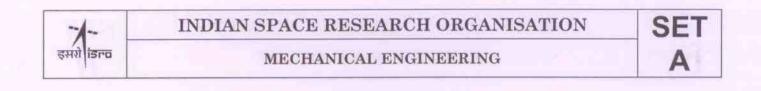
16

-/-		INI	SET		
इस	रो डिल्व		MECHANICA	L ENGINEERING	A
39.	worl	t is 5 kJ and the	heat is 23 kJ. In t	ists of three processes. During the he second process no work takes pl is adiabatic. The work in the third	ace and the hea
	(a)	–32 kJ		(b) -23 kJ	
	(c)	–22 kJ		(d) zero	
0.	Mult	i stage centrifug	al pumps are used f	or	
	(a)	high discharge			
	(b)	high head and	high discharge		
	(c)	high pressure			
	(d)	high efficiency			
1.				us (0.5 ± 0.005) mm and length (6 rement of density is	± 0.06) cm. Th
1.					± 0.06) cm. Th
	maxi (a) (c)	mum percentage 1 3	e error in the measu	rement of density is (b) 2	
	maxi (a) (c)	mum percentage 1 3	e error in the measu	rement of density is (b) 2 (d) 4	
	maxi (a) (c)	mum percentage 1 3	e error in the measu	rement of density is (b) 2 (d) 4 -2 and choose the correct combination	
	maxi (a) (c)	mum percentage 1 3	e error in the measu olumn-1 and column Column-1	rement of density is (b) 2 (d) 4 -2 and choose the correct combination Column-2	
	maxi (a) (c)	mum percentage 1 3	e error in the measu olumn-1 and column Column-1 K – Kaplan	rement of density is (b) 2 (d) 4 -2 and choose the correct combination Column-2 1 – steam turbine 2 – inward flow reaction	
	maxi (a) (c)	mum percentage 1 3	e error in the measu olumn-1 and column Column-1 K – Kaplan P – Parsons	rement of density is (b) 2 (d) 4 -2 and choose the correct combination Column-2 1 – steam turbine 2 – inward flow reaction	
	maxi (a) (c)	mum percentage 1 3	e error in the measu olumn-1 and column Column-1 K – Kaplan P – Parsons Fo – Fourneyron Fr – Francis	rement of density is (b) 2 (d) 4 -2 and choose the correct combination Column-2 1 – steam turbine 2 – inward flow reaction 3 – outward flow reaction	
	maxi (a) (c) Mato	mum percentage 1 3 h the items in co	e error in the measu olumn-1 and column Column-1 K – Kaplan P – Parsons Fo – Fourneyron Fr – Francis	rement of density is (b) 2 (d) 4 -2 and choose the correct combination Column-2 1 – steam turbine 2 – inward flow reaction 3 – outward flow reaction	on
	maxi (a) (c) Matc	mum percentage 1 3 h the items in co K - 1, P - 4, Fo	e error in the measu olumn-1 and column Column-1 K – Kaplan P – Parsons Fo – Fourneyron Fr – Francis O – 3, Fr – 3 O – 3, Fr – 2	rement of density is (b) 2 (d) 4 -2 and choose the correct combination Column-2 1 – steam turbine 2 – inward flow reaction 3 – outward flow reaction	on
1.	maxi (a) (c) Mato (a) (b)	mum percentage 1 3 h the items in co K - 1, P - 4, Fo K - 3, P - 1, Fo	e error in the measu olumn-1 and column Column-1 K - Kaplan P - Parsons Fo - Fourneyron Fr - Francis 0 - 3, Fr - 3 0 - 3, Fr - 2 0 - 3, Fr - 2	rement of density is (b) 2 (d) 4 -2 and choose the correct combination Column-2 1 – steam turbine 2 – inward flow reaction 3 – outward flow reaction	on

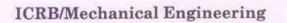

	INDIAN SPACE RESEARCH ORGANISATION	SET
इसरो डिल्व	MECHANICAL ENGINEERING	Α

- 73. Which of the following pressure gauge is generally used for the calibration of other pressure measuring gauges
 - (a) Bourdon's tube pressure gauge
 - (b) Diaphragm pressure gauge
 - (c) Dead weight pressure gauge
 - (d) Manometer gauge
- 74. In a ball bearing, if the number of balls is reduced to half and diameter of the ball is increased to 4 times, then static load capacity of the ball bearing is
 - (a) reduced 4 times
 - (b) reduced 8 times
 - (c) increased 4 times
 - (d) increased 8 times
- 75. The velocity of sound in winter compared to summer will be
 - (a) higher
 - (b) lower
 - (c) same
 - (d) cannot be predicted
- 76. Gaseous Nitrogen at 30°C is expanded through a converging nozzle from a total pressure of 0.5 MPa to a back pressure chamber. If the back pressure is increased from 0.1 MPa to 0.4 MPa in steps of 0.02 MPa, the trend in mass flow rate through the nozzle
 - (a) will gradually decrease
 - (b) will gradually increase
 - (c) will remain constant till a point and then gradually decrease
 - (d) will remain constant till a point and then gradually increase

ICRB/Mechanical Engineering



ICRB/Mechanical Engineering


19

