CIVIL ENGINEERING

Paper-2

Series

601

Duration: 150 Minutes

Max. Marks: 150

INSTRUCTIONS TO CANDIDATES

- Please check the Test Booklet immediately on opening and ensure that it contains all the 150 multiple choice questions printed on it.
- Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with the Question Paper Booklet. The OMR Answer sheet consists of two copies i.e., the Original Copy (Top Sheet) and Duplicate Copy (Bottom Sheet). The OMR sheet contains Registered Number/Hall Ticket Number, Subject/Subject Code, Booklet Series, Name of the Examination Centre, Signature of the Candidate and Invigilator etc.
- 3. If there is any defect in the Question Paper Booklet or OMR Answer Sheet, please ask the invigilator for replacement.
- 4. Since the answer sheets are to be scanned (valued) with Optical Mark Scanner system, the candidates have to USE BALL POINT PEN (BLUE/BLACK) ONLY for filling the relevant blocks in the OMR Sheet including bubbling the answers. Bubbling with Pencil / Ink Pen/ Gel Pen is not permitted in the examination.
- 5. The Test Booklet is printed in four (4) Series, viz. A or B or C or D. The Series A or B or C or D is printed on the right-hand corner of the cover page of the Test Booklet. Mark your Test Booklet Series in Part C on side 1 of the Answer Sheet by darkening the appropriate circle with Blue/Black Ball Point Pen.

Example to fill up the Booklet Series : If your Test Booklet Series is A, please fill as shown below :

If you have not marked the Test Booklet Series at Part C of side 1 of the Answer Sheet or marked in a way that it leads to discrepancy in determining the exact Test Booklet Series, then, in all such cases, your Answer Sheet will be invalidated without any further notice.

6. Each question is followed by 4 answer choices. Of these, you have to select one correct answer and mark it on the Answer Sheet by darkening the appropriate circle for the question. If more than one circle is darkened, the answer will not be valued at all. Use Blue/Black Ball Point Pen to make heavy black marks to fill the circle completely. Make **no** other stray marks.

e.g. : If the answer for Question No. 1 is Answer choice (2), it should be marked as follows:

- 1. 1 (3) (4)
- 7. Mark Paper Code and Roll No. as given in the Hall Ticket with Blue/Black Ball Point Pen by darkening appropriate circles in Part A of side 1 of the Answer Sheet. Incorrect/not encoding will lead to *invalidation* of your Answer Sheet.

Example: If the Paper Code is 601 and Roll No. is 1309102001, fill as shown below:

(Continued on back cover page.)

- Please get the signature of the Invigilator affixed in the space provided in the Answer
 Sheet. An Answer Sheet without the signature of the Invigilator is liable for invalidation. Candidate should sign in the space provided on the OMR Answer Sheet.
- Rough work should be done only in the space provided for that purpose in the Question Paper Booklet. No loose sheet of paper will be allowed into the Examination hall.
- Do not mark answer choices on the Test Booklet. Violation of this will be viewed seriously.
- In case of any discrepancy between English and Telugu Versions of the questions, English Version of the question shall be treated as final.
- Use of Calculators, Mathematical Tables, Log Books, Pagers, Cell Phones or any other electronic gadgets is strictly prohibited.
- 13. The candidate should write the Question Paper Booklet Number and sign in the space provided in the Nominal Rolls while ensuring the Bio-data printed against his/ her name is correct.
- 14. If the candidate notices any discrepancy printed on Hall tickets as to community, gender, date of birth etc., they may immediately bring to the notice of the Commission's officials/ Chief Superintendent in the examination centre and necessary corrections be made in the Nominal Roll, in the Examination Hall against his/her Hall Ticket Number for being verified by the Commission's Office.
- 15. The Commission would be analyzing the responses of a candidate with other appeared candidates to detect patterns of similarity. If it is suspected that the responses have been shared and the scores obtained are not genuine / valid, the Commission reserves the right to cancel his/her candidature and to invalidate the Answer Sheet.
- 16. (i) Whenever Written Examination is held, only those candidates who are totally blind are allowed to write the examination with the help of scribe and 20 minutes extra time is permitted to them per hour.
 - (ii) An extra time of 20 minutes per hour is also permitted for the candidates with locomotor disability and CEREBRAL PALSY where dominant (writing) extremity is affected for the extent slowing the performance of function (Minimum of 40% impairment), scribe is allowed to such candidates.

- (iii) Scribe will be provided to those candidates who do not have both the upper limbs for Orthopedically handicapped. However, no extra time will be granted to them.
 - (a) The scribe should be form an academic discipline other than that of the candidate and the academic qualification of the scribe should be one grade lower than the stipulated eligibility criteria.
 - (b) The candidate as well as the scribe will have to give a suitable undertaking confirming the Rules applicable.
- No candidate should leave the examination hall until completion of examination time.
- 18. Before leaving the examination hall, the candidate should handover the original OMR Answer Sheet (top sheet) to the Invigilator and carry the bottom sheet (duplicate) for his/her record, failing which action will be taken for malpractice.
- 19. The script will not be valued if the candidate :
 - Writes the Hall Ticket No. in any other place of OMR sheet, except in the space provided for the purpose.
 - (ii) Writes irrelevant matter, including the religious symbols, words, prayers or any communication whatsoever, in any place of the OMR Answer Sheet.
 - (iii) Uses other than Blue/Black Ball Point Pen to darken the circles.
 - (iv) Forgetting to bubble the Test Booklet series or bubbling the other Test Booklet Series code than supplied to him/her.
 - (v) Bubbling the circles incompletely or using ✓ or × or ⊙ in the circles.
 - (vi) Using of whitener on the Answer Sheet is liable for invalidation of the candidature.
 - (vii) If any type of tampering (rubbing the circles with chalk powder/scratching the circles with razors etc) is noticed will lead to invalidation of the candidature.
 - (viii) Adopts any method of malpractice.
- No correspondence will be entertained in this matter by the Commission, if the Answer Sheet of the candidate is invalidated/ rejected due to the above reasons.

CIVIL ENGINEERING

1.	The working principle of the optical square is based on
	(1) Reflection (2) Refraction
	(3) Double reflection (4) Double refraction
2.	If the magnetic bearing of a line is 48° $24'$ and the magnetic declination is 5° $30'$ East, then the true bearing is
	(1) 42° 54′ (2) 37° 24′ (3) 53° 54′ (4) 59° 24′
3.	Setting out a simple curve by two theodolite method does not require
	(1) Angular measurements (2) Linear measurements
	(3) Both angular and linear measurements (4) Any measurement
4.	Point of tangency is the
	(1) Beginning of the curve
	(2) End of the curve
	(3) Common point where the radius changes
	(4) Common point where the radius and direction changes
5.	In chain surveying, field work is limited to
	(1) Linear measurements only
	(2) Both linear and angular measurements
	(3) Angular measurements only
	(4) Vertical measurements
6.	The correction to be applied to each 30 m chain length along slope is
	(1) $30 (1 - \sec \alpha) \text{ m}$ (2) $30 (\sec \alpha - 1) \text{ m}$ (3) $30 (1 - \cos \alpha) \text{ m}$ (4) $30 (\cot \alpha - 1) \text{ m}$
7.	The correction for sag is
	(1) Always additive
	(2) Always negative
	(3) Always zero
	(4) Some times additive and some times negative
8.	Which of the following error is not eliminated by the method of repetition for horizontal angle measurement?
	(1) Error due to eccentricity of verniers
	(2) Error due to displacement of station signals
	(3) Error due to wrong adjustments of line and trunnion axis
	(4) Error due to inaccurate graduation
9.	A triangle is said to be well conditioned when its angles lie between
	(1) 20° and 150° (2) 30° and 120° (3) 15° and 135° (4) 25° and 130°
10.	Which of the following is not used in measuring perpendicular offsets?
	(1) Line ranger (2) Tape (3) Optical square (4) Cross-staff
11.	Le Chatelier apparatus is used to determine which of the following properties of cement ?
	(1) Soundness (2) Initial setting time
	(3) Fineness (4) Compressive strength

12.	The carrier in case of distemper is (1) Linseed oil (2) White lead	(3)	Poppy oil	(4)	Water
13.	As per NBC 2005, institutional buildings come	es unde	er aut in signific		now set 1
	(1) Group – A (2) Group – B	(3)	Group - C	(4)	Group – D
14.	Queen post truss is suitable for spans up to				or held
	(1) 5 to 8 m (2) 12 m		16 m	(4)	24 m
15.	Dressing of stone is done				
	(1) After seasoning	(2)	After quarrying		
	(3) Before use	(4)	Before seasonin	g.	
16.	Low heat cement consists lower percentage of				
	(1) C_3A (2) C_3S	(3)	C ₂ S	(4)	C ₄ S
17.	Which of the following paints recommended surface?	for us	e on stucco plasto	er, brid	ck and masonry
	(1) Enamel paints (2) Emulsion paints	(3)	Plastic paints	(4)	Oil paints
18.	Gypsum is added to portland cement during	its ma	nufacturing so th	at it m	ay
	(1) Accelerate the setting time	(2)	Retard the setti	ng tim	
	(3) Decrease the burning temperature				(J • (J)
19.	Smith's test is conducted on a sample of parameter?	stone	to find out wh	nich o	f the following
	(1) Compressive strength	(2)	Toughness	11	
	(3) Presence of soluble matter	(4)	Hardness	Court I	
20.	Presence of which of the following is respon	sible fo	or imparting yello	w tint	to bricks ?
	(1) Silica (2) Alumina		Lime		Magnesia
21.	For a given system of coplanar concurrent for	orces, i	$f \Sigma Fx = -20 \text{ N and}$	$d \Sigma Fy$	= - 20 N, then
	(1) $R = -20\sqrt{2} \text{ N and } \alpha = 45^{\circ} \text{ with east}$	(2)	$R = 20\sqrt{2} \text{ N and}$	$\alpha = 1$	35° with east
	(3) $R = 20\sqrt{2} \text{ N and } \alpha = 225^{\circ} \text{ with east}$	(4)	$R = -20\sqrt{2} \text{ N at}$	$nd \alpha =$	315° with east
22.	Which of the following cases gives the least	mome	nt of inertia, in ca	se of	a square ?
	(1) M.I. about the base side		M.I. about the t		
	(3) M.I. about the diagonal	(4)	M.I. about one		
23.	In a triangular section of size 'b \times h', if wide then its I_{XX} is increased by	dth is r	reduced to half a	nd he	ight is doubled,
	(1) 2 times (2) 4 times	(3)	8 times	(4)	16 times
24.	A structural member is generally designed s	o that	the material is str	ressed	to
	(1) Yield stress	(2)	Ultimate stress	t ben	
	(3) Breaking stress	(4)	Working stress		
25.	In an RCC column, if $A_s = 1000 \text{ mm}^2$, $A_c = 1000 \text{ mm}^2$	00 mn	σ_c^2 , $\sigma_c = 5N/mm^2$	and m	= 20, then load
	on the column is				JAL . Et Chatel
	(1) 75 kN (2) 145 kN	(3)	150 kN	(4)	1005 kN

26.	If σ and E for a body of v Resilience of the body is	olume 2×10^5	mm ³	are 10 N/mm ² a	nd 1	\times 10 ⁵ N/mm ² ,
	(1) 10 N mm (2)	20 N mm	(3)	100 N mm	(4)	200 N mm
27.	If a simply supported beam the maximum bending mom	of 5 m span carr ent on it is	ries a		kN at	2 m from LHS,
28.	For a solid circular beam of 4				.,,	
	(1) $\pi \times 10^3 \text{mm}^3$ (2)				(4)	$8\pi \times 10^3 \text{ mm}^3$
29.	If maximum slope of a simple maximum deflection is					
	(1) $\pi L/240$ (2)	πL/270	(3)	πL/540	(4)	πL/576
30.	Moment area method can be (1) Simply supported bean (2) Simply supported bean (3) Simply supported bean (4) Cantilever with point lo	n with eccentric in with point load in with two symm	ooint l s & UI	oad DL	ıl poin	t loads
31.	The resultant of two collinea	r forces P and Q,	which	are acting in opp	osite	direction is
	(1) P + Q (2)	P-Q	(3)	$\sqrt{P^2 + Q^2}$	(4)	$\sqrt{P^2-Q^2}$
32.	The force system that is appl (1) Collinear forces (3) Unlike parallel forces		ttle ca			
33.	In a circular section of diamet (1) 4 times (2)			hen its polar M.I. 16 times		
34.	In case of a stepped bar of a proportional to					
	(1) P/E		(2)	[11 + 12 + +	/_]	
	(3) $\left[\frac{1}{A_1} + \frac{1}{A_2} + \dots + \frac{1}{A_n}\right]$			$\left[\frac{l_1}{A_1} + \frac{l_2}{A_2} + \dots \right]$		e il coheston
35.	The unit for modulus of resilie	ence is			170	
	(1) Joule (2)		(3)	Joules/mm ²	(4)	Joules/mm ³
	Variation of bending moment				iq mi	received to
	(1) Straight line variation(3) Cubic variation	48. (U) 48. AM (**)	(2) (4)	Parabolic variation Zero i.e. horizon		aight line
37.	In case of an I-beam, major po (1) Top flange (3) Top and bottom flanges			force at a section Bottom flange		
38.	Maximum deflection in a simp				endin	
		$\delta = \frac{ML^2}{8EI}$		$\delta = \frac{ML^2}{12EI}$	(4)	$\delta = \frac{5}{48} \frac{ML^2}{EI}$

39.		The second secon		changed, if the s		a cantilever	carrying e	nd point load is
	doul			e is increased by 4 times	(3)	8 times	(4)	16 times
40.	The	condition for sta	bility o	f a dam against o	ver tu	rning is		
				$\frac{W(b-\overline{x})}{P\times h/3} \ge f.s.$			(4)	$\frac{\text{W} \cdot \text{b}}{\text{P} \cdot \text{h}/3} \ge \text{f.s.}$
41.	Fort	the force system	shown	below, the tensi	on T ₁ i	n the rope is		
			dono	T ₁	T ₂	yu .		
				T ₁ 120°	X		a di sanjai	
		verific v.(f)		120°				
				in the state of the	2 hoje		glood by	
				1000	V		ho vate o	
	(1)	500 N	(2)	866 N	(3)	1000 N	(4)	1732 N
42.	The	horizontal comp	onent	of a force P acting	g towa	rds north is	ε, .	
	(1)	0	(2)	Р	(3)	2P	(4)	00
43.	The	moment of inert	ia of a	semi-circle of dia	meter	D about its b	ase diame	ter is
	(1)	$\frac{\pi}{32}$ D ⁴	(2)	$\frac{D^4\pi}{64}$	(3)	$\frac{\pi D^4}{128}$	(4)	$\frac{\pi D^4}{256}$
44.		number of unk	nown i	reactions to be	found	at a fixed su	pport of	a beam, during
	(1)	Editaria de la Persona	(2)	2	(3)	3	(4)	4
45.	Effe		colun	nn of length 'L'	with o	ne end fixed		
		Le = L	(2)	Le = L/2	(3)	10=1/5/2	- ke(4)	Le = 2L
46					(3)	LC - L/ \/ 2	0.12	20
46.		hesion > adhesion Capillary rise o			(2)	Depression	occurs	
	(3)	remain plane	ccurs		(4)	either rise o	ALC: NOT	al have self
47.			re of 4	.5 m of water, th	A Thinks		COU	e is
	(1)	5.83 m of water			(2)	14.83 m of		a upliches/ 148
	(3)	12.33 m of wa	ter		(4)	8.83 m of w	ater	
48.		A Committee of the contract of		vith vortex down				
	(1)			entre of pressure h/3		h/2		2h/3
49.	The	velocity at the R	eynold	's number equal	to 200	0 is called		merson of the
	(1)	Critical velocity		y majerie	(2)			M CONTRACTOR

(3) Higher critical velocity

(4)

Uniform velocity

50.		void separation, urimeter is	the mo	ost suitable ratio	of the	roat diameter an	d pipe	diameter in a
	(1)	$\frac{1}{4}$ to $\frac{1}{2}$	(2)	$\frac{1}{3}$ to $\frac{1}{2}$	(3)	$\frac{1}{3}$ to 1	(4)	1 to 4
51.	Due (1)	to each end cont 0.1 L	raction (2)	, the crest length 0.1 H	is red (3)	uced by $0.1 \text{ v}^2/2\text{g}$	(4)	0.01 L
52.	Cond (1)	dition for broad c 2b > H	TOTAL STATE OF THE PARTY OF THE		(3)	H < b	(4)	b = 2H
53.	To p (1)	revent cavitation 7.5 m	to occi	ur, the maximum 10.3 m		t of the summit o 15 m	f the s (4)	yphon shall be 20 m
54.	A tur (1) (2) (3) (4)	Mechanical ene Kinetic energy in	y into I ergy into nto Me	onverts Mechanical energ o Hydraulic energ chanical energy Mechanical energ	У	d unit vote of del of 20 m5 and 7.2 d 150 not and 7.4 d cost of the north		ou. The qualitation of the second of the sec
55.	Fran	cis turbine is a				Personal Total		
	(1) (3)	Axial flow impul Axial flow react			(2) (4)	Radial flow impu		
56.	Capi (1) (3)	llarity is due to Cohesion only Both cohesion a	and adh	nesion	(2) (4)	Adhesion only Viscosity only		
57.		position of centre	e of pre	essure on a plane	surfac	ce immersed vert	ically i	n a static mass
	(1) (3)	at the centre of always below th			(2) (4)	always above th		
58.	Hydr (1) (2) (3) (4)	Pressure head a	and kind d datur kinetic	n head head & datum he		or how long to Long OF 2, 002, 1 22 12 (1) controlled on		Belgreiselig Be owner in PES (1) Belgreiselig Palakelige Palakelige
59.	The (1) (2) (3) (4)	inlet length of ver is equal to the o is more than the is less than the has no relation	outlet le e outle outlet l	ength t length ength		nerick fizikanie nericker en estek edina de estek edina de		
60.	The (1)	average value of 0.62	co-effic (2)	cient of velocity is 0.76	(3)	0.84	(4)	0.97
61.	The	discharge over a	right ar	ngled V-notch is				
	(1)	$\frac{8}{15}$ cd $\sqrt{2g}$ H	(2)	$\frac{8}{15}\text{cd}\sqrt{2g}\text{H}^{3/2}$	(3)	$\frac{8}{15}$ cd $\sqrt{2g}$ H ²	(4)	$\frac{8}{15} \text{ cd} \sqrt{2g} \text{ H}^{5/2}$

62.	Low discharges are effecti	vely measured h	V			
6	(1) Rectangular notch	rery measured b	(2)	Stepped note	h	olemnutnev.
	(3) Trapezoidal notch			· Triangular no		
63.	The hydraulic mean depth	of a pipe of 1 m		Chicken (27)		
,		0.5 m				2.0 m
64.	The discharge through a ch	annel of rectangu	lar section	on will be maxim	num if	
	(1) Its depth is twice the(3) Its depth is thrice th	e breadth.	(2)	Its breadth is	twice th	
65.	A drop of water maintains (1) Cohesion (2)			count of its Viscosity		Capillarity
66.	The quantities and unit rate (i) Brick work of 20 m ³ (ii) Plastering of 150 m ² Calculate the total cost of (1) ₹ 50,400 = 00 (2)	and ₹ 2520/- per and ₹ 1250/- pe	r m ³ er m ²	gyinto Etechar eczy Into Hydu into Machanic	re pad 6	A turbine is (1) -inydra (2) Mech
67.	Calculate the quantity of i					
	is 3.0 m.	0.30 m		Aniston and	Emil wo	I I I I I I I I I I I I I I I I I I I
		// V	/	/ 本		
	vino ne	1	W		TREAT	
	0.30 m	>/e		4.60 m		THE BUILD
	sed vertically in a static man		//			
	above the centre of gravity	6.60		- Amdoan		wit 16" [1]
		20 m ²	(3)	60 m ³	(4)	60 m ²
68.	Estimate the cost of brick of brick work is ₹ 1,500 = 0	0 per Cu.m.				
-	(1) ₹ 5,40,000 (2)		(3)	₹ 18,000	(4)	₹ 5,400
69.	Calculate the quantity of portion of road in an uniform and 2.00 m. The formation	rm ground. The	heights	of banks at the		
	(1) 3800 Cu.m (2)	3900 Cu.m	(3)	3950 Cu.m	(4)	4000 Cu.m
70.	The centre line length of the	ne following fig is				
III.	A version transport and the control of the control of the parties fine control of the control of	0.6	70 m	o ent dame, a		(3) (a less (3) (4) (4) (5) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7
	(1) 26.20 πm (2)	28 πm	(3)	28.60 πm	(4)	196 πm
Series	-A	8				601

71.	As per IS 3861:2002, in the detailed estimate the volumes are worked out to the nearest of (1) 0.01 Cu.m (2) 0.05 Cu.m (3) 0.005 Cu.m (4) 0.001 Cu.m
72.	Estimate the rate of metal at site per Cu.m. whose rate at source is ₹ 800/Cu.m (including loading & unloading) and lead of 35 km @ a rate of ₹ 20/km
	(1) $\stackrel{?}{=} 800 = 00$ (2) $\stackrel{?}{=} 700 = 00$ (3) $\stackrel{?}{=} 1500 = 00$ (4) $\stackrel{?}{=} 2000 = 00$
73.	If 'b' is the width of formation, 'd' is the height of the embankment, of length 'L' and side slope n : 1 for a road, the quantity of earth work is
	(1) $(b/d + nd) L$ (2) $(bd + nd^2) L$ (3) $(bd - n\sqrt{d}) L^2$ (4) $L/2 (bd + nd^2)$
74.	Abstract estimate is (1) Estimation of quantities of various items of work (2) Estimation of unit rates of various items of work (3) Estimation of cost of various items of work (4) Estimation of leads of various items of work
75.	Detailed specifications includes (1) Rates of various items of work (2) Measurements taken after execution of work (3) Quantities of items dumped at site (4) Quantities and qualities of materials
76.	The relation between modulus of rupture (f _{cr}) and characteristic compressive strength
	(f _{ck}) is given by
	(1) $f_{cr} = 0.7 f_{ck}$ (2) $f_{cr} = 0.7 \sqrt{f_{ck}}$ (3) $f_{cr} = 0.75 f_{ck}$ (4) $f_{cr} = 0.7/\sqrt{f_{ck}}$
77.	The approximate value of the total shrinkage strain in concrete for design is taken as (1) 0.0001 (2) 0.0003 (3) 0.002 (4) 0.0035
78.	A beam of 400 mm effective depth with a neutral axis constant of 0.39, the value of lever arm is
	(1) 250 mm (2) 300 mm (3) 348 mm (4) 358 mm
79.	For vertical stirrups, the maximum spacing of shear reinforcement measured along the axis of the member shall not exceed
	(1) 0.75 d (2) 0.40 d (3) 0.15 d (4) 0.12 d
80.	Calculate the pitch of lateral ties for a column of 300 mm square with 20 mm dia longitudinal bar and 8 mm ϕ lateral tie.
	(1) 384 mm (2) 320 mm (3) 300 mm (4) 280 mm
81.	Calculate the strength of fillet weld per 1 mm of 6 mm size with allowable shear stress in the weld 100 Mpa.
	(1) 700 N (2) 600 N (3) 424 N (4) 420 N
82.	The section modulus and the plastic modulus of a section are Z and P respectively. Then its shape factor is given by
	(1) Z/P (2) P/Z (3) $(P-Z)/P$ (4) $(P-Z)/Z$
601	9 Series-A

83.	The lacing of a compression member i	s designed	to resist a to	otal transverse sh	ear 'V'
	 (1) 1.25% of the axial force in the men (2) 1.5% of the axial force in the mem (3) 2.0% of the axial force in the mem (4) 2.5% of the axial force in the mem 	ber ber		in area anti-estim (gallacolors d'amb ett a (13) Te	
04	A STATE OF THE PROPERTY OF THE PARTY OF THE			Na influenced St.	Class
84.	In case of limit state, the maximum strain bending is (1) 0.35 (2) 0.035	(3)	0.0035	(4) 0.002	on libre
85.	In the designation of a concrete mix, the			A STORY OF THE	
	(1) Mix and characteristic compressiv				EL.
	(2) Mix and characteristic compressiv	e strength	of 75 mm cube	e at 28 days	
	(3) Mix and characteristic compressiv	e strength	of 150 mm cul	be at 28 days	
	(4) Mix and characteristic compressiv	e strength	of 125 mm cul	pe at 28 days	
86.	The size of the rectangular section is reinforced section is less than design mo				singly
	(1) Under-reinforced	(2)	Over-reinfor	ced	
	(3) Doubly reinforced	(4)	Compressive	failure	
87.	In M20 & M25, the number is characteris	stic compre	ssive strength	in N/mm ² at	_ days.
	(1) 7 (2) 14	(3)	21	(4) 28	
88.	The grade of concrete generally not use	d in the rei	nforced concre	ete is	
	(1) M40 (2) M25	(3)	M20	(4) M10	
89.	If the given bending moment is greater then the section is	than mom	nent of resista	nce of balanced s	ection,
	(1) Balanced section	(2)	Under-reinfo	orced section	
	(3) Over-reinforced section	(4)	Critical section	on	
90.	Modulus of elasticity of steel shall be tal	ken as			
	(1) 200 kN/mm^2 (2) $2 \times 10^3 \text{ N/m}^2$	mm ² (3)	$2 \times 10^4 \text{ N/m}$	m^2 (4) 2×10^2	N/mm ²
91.	The area between the 180 hytes 0.45 0.60 m is of 150 Sq.km. The average de of 250 Sq.km will be			1 4	
	(1) 0.50 m (2) 0.55 m	(3)	0.56 m	(4) 0.60 m	
92.	Duty should clearly state				
	(1) Time of measurement of water(3) Method of measurement of water	(2)	Place of mea	surement of water infall	er
93.	If the catchment area is 100 Sq. km maximum flood discharge as per Dicken			tant is 12.47, th	en the
	$(1) Q = 12.47 \times 100^{2/3}$	(2)	$Q = 100 \times 12$		
	(3) $Q = 100 \times 12.47^{2/3}$	(4)	$Q = 12.47 \times 10^{-1}$	1003/4	
Serie	s-A	10			601

94.	The escape of ear water results in a			foundati		long with	the percolated
	(1) Piping	(2)	Creep	(3)	Uplift	(4)	Scour
95.	(2) Difference b	of level be between to between t	tween MWL ar op of dam and op of dam and op of dam and	MWL. FRL.	TO SEE THE AT ANY BUT NOT BEENING BUTTON		general (P) resulte galle no objete A rene erro) (ex
96.	A canal which is a (1) Contour car (3) Ridge canal	nal	right angles to	the conto (2) (4)	watershed Side slope ca		
97.	The sill of the not						
			eam channel	(2)	FSL of upstro		
	(3) FSL of dowr			(4)	Bed level of		channel
98.	The process of ma		ertile barren la				
	(1) Soil conserv			(2)	Land reclam		The second
	(3) Gully erosio			(4)	Afforestatio	n i lastant	
99.	(2) Base period (3) Crop period	is slightly is slightly is equal t	more than ba more than cro to the base per period are exp	op period iod.	Aura (a)		odles death size death seen - 13 death brod Albita
100.	Pick out the facto	r which d	oes not affect i	runoff			
	(1) Shape of ca			(2)	Existence of		on .
	(3) Type of soil		mines (1718)	(4)	Existence of	building	
101.	The major resistir		a gravity dam		14		mark Mari
	(1) Water press(3) Self weight		self of Bling (in	(2)	Wave pressi Uplift pressi		John and Rus S
102			is a sout dood	(4)	Opint pressu	are.	
102.	Dead storage in a (1) To meet em (2) To mitigate (3) To accomm (4) To increase	nergency r floods odate the	sill-trapped in	the reser	voir		e dingt ±Kritaca i Lea :
103.	A surplus weir of	an earthe	n dam with ste	epped apr	on is classified	d as	
	(1) Type – A	(2)	Type - B	(3)	Type – C	(4)	Type – D
104.	Generally irrigation (1) Contour can					(4)	Branch canal
105.	A canal which wil (1) Contour can					(4)	Branch canal
106.	The method used (1) Flood irriga (3) Leaching		e the salinity o	of the soil (2) (4)	Sprinkler irr Surface irrig	100	rena menci dari Rolam accoli mana arena
601	1-1			11			Series-A

-

107.	The average Δ of rice crop is nearer to				Station .
	(1) 400 mm (2) 800 mm	(3)	1200 mm	(4)	1600 mm
108.	Water loss through the leaves of plants is ter	rmed a	as		
	(1) Precipitation	(2)	Infiltration		
	(3) Transpiration	(4)	Surface evapora	tion	
109.	A divide wall is constructed for the purpose	of			
	(1) Controlling seepage	(2)	Scouring the silt		
	(3) Creating a still pond	(4)	Providing a fish p	passa	ge
110.	A rock toe filter in an earthen dam is provide (1) Upstream end of the bund (2) Under the base of the bund (3) Downstream end of the bund (4) At the centre of the bund along the lend				
111.	The formula $P_n = P \left(1 + \frac{r}{100} \right)^n$ is used for forest	casting	g population by		
	(1) Arithmetical increase method (3) Incremental increase method	(2)	Geometrical incr		method
440		(4)	Graphical metho		
112.	The geological formation which yields sufficiently (1) Aquifuge (2) Aquiclude	(3)	antity of water is of Aquifer	alled (4)	Aquitard
113.	Hardness is expressed in mg/l as				
	(1) $Ca(HCO_3)_2$ (2) $CaCO_3$	(3)	Ca(OH) ₂	(4)	CaSO ₄
114.	Super chlorination is done				
	(1) In day to day practice	(2)	During an epiden	nic	
	(3) During winter	(4)	During summer		
115.	The normal temperature of sewage when con	mpare	d to that of water	is ger	erally
	(4)		Same		Has no relation
116.	The detention period in primary sedimentation	on tan	k in a sewage treat	ment	t plant is
	(1) 1 to 3 hrs (2) 4 to 8 hrs		8 to 12 hrs	(4)	12 to 18 hrs
117.	The upper most layer of atmosphere is called			de la tr	
	(1) Stratosphere (2) Mesosphere	(3)	Ionosphere	(4)	Exosphere
118.	The base of cone of depression is called	9-10-6	and an in the control of		
	(1) Circle of influence	(2)	Radius of influence	re ·	
	(3) Draw down	(4)	Specific yield		
119.	Presence of chlorides and sulphates of calcium			er ca	LICAC
	(1) Acidity	(2)	Temporary hardn		uses
· ikr	(3) Permanent hardness	(4)	Softness	200	
120.	Odour and taste is controlled by				
	(1) Disinfection	(2)	Aeration		
	(3) Coagulation	(4)	Soda-lime proces	S	
Series-					601

							Sprips-/
134.	A pavement has a horelevation is (1) 1 in 70				a design speed 1 in 40		nph. The super-
		(2)	11/600	(3)	15/600	(4)	30/600
	Calculate the rise of width and situated in (1) 0.01 m	areas (2)	of heavy rainfall. 0.05 m	(3)	0.07 m	(4)	0.10 m
	A common problem i (1) Skid	(2)	Earthquake	(3)	Slip	(4)	Land slide
		(2)	Annivores	(3)	Herbivores	(4)	Macrophytes
29.	The hydraulic mean of (1) d/2	lepth o	of a circular sewe d/4	r runn (3)	ing half full is ed d/6	qual to (4)	d/8
28.	For ease in the design (1) Thumb rules (3) Emperical form		wers, the followin	(2) (4)	made use of Nomograms Hydraulic forr	mulae	to supply that
7.	Over flow pipes are p (1) Floor level (3) Full reservoir le		d in service reser	(2) (4)	Top of the res Mid level	servoir	
6.	The permissible turbi (1) 30 – 40		mg/l for potable 20 – 30			(4)	5 – 10
5.	A water borne diseas (1) Malaria	e is (2)	Plague.	(3)	Dysentry	(4)	Encephalitis
4.	(1) Activated sludg (3) Primary sedime	e proce	ess	(2)	Trickling filter Secondary sec		tion tank
	(3) Vast areas for d	s high. quired t isposa t is inve	to carry night soi I are necessary. olved in collectio	l. n and	transportation (n waste.
2.	The valves which are (1) Drain valve		Scour valve	iment (3)	in a pipe line is Air valve	called (4)	Sluice valve
	(1) Tree-System(3) Radial System			(2) (4)	Grid Iron Syste Dead end Syst		

A soil (1) A soil reduc (1) A soil reduc (1) Layou (1) Altern (1) IRC Cc (1) In urb cycle t (1) To div (1) Pycno (1) (2) (3) (4) Water	has a volume of sed to 150 gr. Cal 30% has a volume of sed to 150 gr. Cal 9.81 kN/m³ at of centre line of Setting out nate routes for a Political map ommittee was ap 1920 an areas, when strack is 3.5 m ride the traffic m Kerb meter is used to measure only to measure only	(2) f 100 c clculate (2) f 100 c clculate (2) of the h (2) highw (2) pointe (2) the vol (2) oving i (2) specif water ific gra ific are orted so	of 50%, calculate 1.0 m³ and mass of 20 the water contents 33% m³ and mass of 20 the bulk density. 14.72 kN/m³ highway on the gree Stake out ay project are sug Traffic map ed by the Governm 1925 lume of cycle traff 3.0 m In opposite directif Footpath ic gravity content evity and water colea	(3) 00 gr. t (3) 00 gr. (3) ound ii (3) gested (3) nent w (3) fic in h (3) on (3)	on over drying for 50% on over drying for 19.62 kN/m³ s called as Alignment d by the study of Topographic map with M.R. Jayaker 1926 igh, minimum with 2.0 m is provided. Median	(4) (4) (4) (4) (4) (4) (4) (4) dth pi (4)	0.33 hrs, the mass is 55% hrs, the mass is 24.53 kN/m ³ Base line Road map airman in 1927
A soil (1) A soil reduc (1) A soil reduc (1) Layou (1) Altern (1) IRC Cc (1) In urb cycle t (1) To div (1) Pycno (1) (2) (3) (4)	sample has a policy of the sample has a volume of the sed to 150 gr. Call 30% has a volume of the sed to 150 gr. Call 9.81 kN/m ³ at of centre line of Setting out that a routes for a Political map of the sed to map of the sed to map of the sed to measure only to measure only to measure specito measur	rosity (2) f 100 c clculate (2) f 100 c clculate (2) of the h (2) highw (2) the vol (2) cy oving i (2) speciff water ific gra ific are	of 50%, calculate 1.0 m³ and mass of 20 the water contents 33% m³ and mass of 20 the bulk density. 14.72 kN/m³ highway on the gree Stake out ay project are sug Traffic map ed by the Governm 1925 lume of cycle traff 3.0 m In opposite directif Footpath ic gravity content evity and water colea	(3) 00 gr. t (3) 00 gr. (3) ound ii (3) gested (3) nent w (3) fic in h (3) on (3)	on over drying for 50% on over drying for 19.62 kN/m³ s called as Alignment d by the study of Topographic map with M.R. Jayaker 1926 igh, minimum with 1926 igh, minimum with 1920 m is provided.	(4) (4) (4) (4) (4) (4) (4) (4) dth pi (4)	0.33 hrs, the mass is 55% hrs, the mass is 24.53 kN/m³ Base line Road map airman in 1927 rovided for the 1.5 m
A soil (1) A soil reduc (1) A soil reduc (1) Layou (1) Altern (1) IRC Co (1) In urb cycle t (1) To div (1) Pycno (1) (2) (3)	sample has a post 3.0 has a volume of sed to 150 gr. Call 30% has a volume of sed to 150 gr. Call 9.81 kN/m³ It of centre line of Setting out hate routes for a Political map of sed to 150 gr. Call 1920 an areas, when set is 3.5 m ride the traffic mode to measure only to measure only to measure specific mea	rosity (2) f 100 c clculate (2) f 100 c clculate (2) of the h (2) highw (2) ppointe (2) the vol (2) specif water ific gra	of 50%, calculate 1.0 m³ and mass of 20 the water content 33% m³ and mass of 20 the bulk density. 14.72 kN/m³ highway on the growstake out ay project are sugned by the Governm 1925 lume of cycle traff 3.0 m In opposite direction footpath ic gravity content evity and water co	(3) 00 gr. t (3) 00 gr. (3) ound ii (3) gested (3) nent w (3) fic in h (3) on (3)	on over drying for 50% on over drying for 19.62 kN/m³ s called as Alignment d by the study of Topographic map with M.R. Jayaker 1926 igh, minimum with 1926 igh, minimum with 1920 m is provided.	(4) (4) (4) (4) (4) (4) (4) (4) dth pi (4)	0.33 hrs, the mass is 55% hrs, the mass is 24.53 kN/m³ Base line Road map airman in 1927 rovided for the 1.5 m
A soil (1) A soil reduc (1) A soil reduc (1) Layou (1) Altern (1) IRC Co (1) In urb cycle t (1) To div	sample has a policy of the state of the stat	rosity (2) f 100 c clculate (2) f 100 c clculate (2) f the h (2) highw (2) ppointe (2) the vol (2) oving i	of 50%, calculate 1.0 m³ and mass of 20 the water content 33% m³ and mass of 20 the bulk density. 14.72 kN/m³ highway on the growstake out ay project are sughay proj	(3) 00 gr. t (3) 00 gr. (3) ound i (3) gested (3) nent w (3) fic in h (3)	on over drying for 50% on over drying for 19.62 kN/m³ s called as Alignment d by the study of Topographic map with M.R. Jayaker 1926 igh, minimum with 1926 igh, minimum with 1920 m is provided.	(4) (4) (4) (4) (4) (4) (4) (4) dth pi (4)	0.33 hrs, the mass is 55% hrs, the mass is 24.53 kN/m³ Base line Road map airman in 1927 rovided for the 1.5 m
A soil (1) A soil reduc (1) A soil reduc (1) Layou (1) Altern (1) IRC Co (1) In urb cycle t (1)	sample has a por 3.0 has a volume of ed to 150 gr. Cal 30% has a volume of ed to 150 gr. Cal 9.81 kN/m ³ It of centre line of Setting out nate routes for a Political map ommittee was ap 1920 an areas, when track is 3.5 m	f 100 c clculate (2) f 100 c clculate (2) of the h (2) highw (2) pointe (2) the vol	of 50%, calculate 1.0 m³ and mass of 20 the water content 33% m³ and mass of 20 the bulk density. 14.72 kN/m³ highway on the gree Stake out ay project are sug Traffic map ed by the Governm 1925 lume of cycle traff	(3) 00 gr. t (3) 00 gr. (3) 00 und in (3) gested (3) ment w (3) fic in h	on over drying for 50% on over drying for 19.62 kN/m ³ is called as Alignment d by the study of Topographic map with M.R. Jayaker 1926 igh, minimum wi	(4) (4) (4) (4) (4) (4) (4) (4) dth pr (4)	0.33 hrs, the mass is 55% hrs, the mass is 24.53 kN/m³ Base line Road map airman in 1927 rovided for the
A soil (1) A soil reduc (1) A soil reduc (1) Layou (1) Altern (1) IRC Co (1)	sample has a post 3.0 has a volume of eed to 150 gr. Cal 30% has a volume of eed to 150 gr. Cal 9.81 kN/m ³ It of centre line of Setting out that routes for a Political map ommittee was ap 1920 an areas, when the	f 100 c clculate (2) f 100 c clculate (2) of the h (2) highw (2) oppointe (2)	of 50%, calculate 1.0 m³ and mass of 20 the water conten 33% m³ and mass of 20 the bulk density. 14.72 kN/m³ highway on the grow Stake out ay project are sug Traffic map ed by the Governmen 1925	(3) 00 gr. t (3) 00 gr. (3) 00 und i (3) gested (3) nent w (3)	on over drying for 50% on over drying for 19.62 kN/m ³ is called as Alignment by the study of Topographic map with M.R. Jayaker 1926	(4) (4) (4) (4) (4) (4) (4) (4) (4)	0.33 hrs, the mass is 55% hrs, the mass is 24.53 kN/m ³ Base line Road map airman in 1927
A soil (1) A soil reduc (1) A soil reduc (1) Layou (1) Altern (1) IRC Co	sample has a post 3.0 has a volume of ted to 150 gr. Cal 30% has a volume of ted to 150 gr. Cal 9.81 kN/m ³ at of centre line of Setting out that are routes for a Political map	f 100 c clculate (2) f 100 c clculate (2) of the h (2) highw (2)	of 50%, calculate 1.0 m³ and mass of 20 the water content 33% m³ and mass of 20 the bulk density. 14.72 kN/m³ highway on the grown stake out ay project are sug Traffic map	(3) 00 gr. t (3) 00 gr. (3) ound in (3) gested (3) nent w	on over drying for 50% on over drying for 19.62 kN/m ³ is called as Alignment by the study of Topographic map with M.R. Jayaker	(4) (4) (4) (4) (4) (4) (4) as cha	0.33 hrs, the mass is 55% hrs, the mass is 24.53 kN/m ³ Base line Road map
A soil (1) A soil reduc (1) A soil reduc (1) Layou (1) Altern	sample has a post 3.0 has a volume of ted to 150 gr. Cal 30% has a volume of ted to 150 gr. Ca 9.81 kN/m ³ It of centre line of Setting out that a volume of the coutes for a set of the coutes fo	f 100 c clculate (2) f 100 c clculate (2) of the h (2) highw	of 50%, calculate 1.0 m³ and mass of 20 the water content 33% m³ and mass of 20 the bulk density. 14.72 kN/m³ nighway on the growstake out ay project are sug	(3) 00 gr. t (3) 00 gr. (3) ound it (3) gested	on over drying for 50% on over drying for 19.62 kN/m ³ is called as Alignment by the study of	(4) (4) (4) (4) (4) (4)	0.33 hrs, the mass is 55% hrs, the mass is 24.53 kN/m ³ Base line
A soil (1) A soil reduc (1) A soil reduc (1) Layou	sample has a post 3.0 has a volume of ted to 150 gr. Cal 30% has a volume of ted to 150 gr. Ca 9.81 kN/m ³ It of centre line of	f 100 c clculate (2) 100 c clculate (2) f 100 c clculate (2)	of 50%, calculate 1.0 m³ and mass of 20 the water conten 33% m³ and mass of 20 the bulk density. 14.72 kN/m³ nighway on the gro	(3) 00 gr. t (3) 00 gr. (3) ound i	0.5 on over drying for 50% on over drying for 19.62 kN/m ³ s called as	(4) or 24 h (4) or 24 h (4)	0.33 hrs, the mass is 55% hrs, the mass is 24.53 kN/m ³
A soil (1) A soil reduc (1) A soil reduc	sample has a po 3.0 has a volume of ed to 150 gr. Cal 30% has a volume of ed to 150 gr. Ca	f 100 c culate (2) f 100 c lculate	of 50%, calculate 1.0 m³ and mass of 20 the water conten 33% m³ and mass of 20 e the bulk density.	(3) 00 gr. t (3) 00 gr.	0.5 on over drying for 50% on over drying for	(4) or 24 h (4) or 24 h	0.33 hrs, the mass is 55% hrs, the mass is
A soil (1) A soil reduc	sample has a po 3.0 has a volume of ed to 150 gr. Cal	(2) f 100 c	of 50%, calculate 1.0 m ³ and mass of 2 the water conten	(3) 00 gr. t	0.5 on over drying fo	(4) or 24 h	0.33 nrs, the mass is
A soil (1)	sample has a po	rosity (2)	of 50%, calculate 1.0	(3)	0.5	(4)	0.33
		37				, ,	
480 a	re represented b	ру			GS	s large	er than IS Sieve
(1)	МН	(2)	SL	(3)	ML		
(1)	МН	(2)	SL	(3)	ML	e repr (4)	resented by OL
(1)	1 in 90	(2)	1 in 15				
A soil degree (1)	deposit having ee of saturation. 50%		a virusimons att	cific gr (3)	avity 2.5 and void		io 0.5, calculate
reduc (1)	ced to 100 gr. Ca 9.81 kN/m ³	(2)	the dry density. 14.72 kN/m ³	(3)	19.62 kN/m ³	(4)	24.53 kN/m ³
	reduction (1) A soil degree (1) Exception (1) As period (1) As period (1) As period (1)	 (1) 9.81 kN/m³ A soil deposit having degree of saturation. (1) 50% Exceptional gradient in the same of the same of	reduced to 100 gr. Calculate (1) 9.81 kN/m³ (2) A soil deposit having water degree of saturation. (1) 50% (2) Exceptional gradient in plair (1) 1 in 90 (2) As per IS soil classification, i (1) MH (2) As per IS soil classification, o (1) MH (2)	reduced to 100 gr. Calculate the dry density. (1) 9.81 kN/m³ (2) 14.72 kN/m³ A soil deposit having water content 15%, specification. (1) 50% (2) 70% Exceptional gradient in plains as per IRC (1) 1 in 90 (2) 1 in 15 As per IS soil classification, inorganic soils with (1) MH (2) SL As per IS soil classification, clays, organic soils (1) MH (2) SL	reduced to 100 gr. Calculate the dry density. (1) 9.81 kN/m³ (2) 14.72 kN/m³ (3) A soil deposit having water content 15%, specific gr degree of saturation. (1) 50% (2) 70% (3) Exceptional gradient in plains as per IRC (1) 1 in 90 (2) 1 in 15 (3) As per IS soil classification, inorganic soils with low of the content of the conten	reduced to 100 gr. Calculate the dry density. (1) 9.81 kN/m³ (2) 14.72 kN/m³ (3) 19.62 kN/m³ A soil deposit having water content 15%, specific gravity 2.5 and void degree of saturation. (1) 50% (2) 70% (3) 75% Exceptional gradient in plains as per IRC (1) 1 in 90 (2) 1 in 15 (3) 1 in 40 As per IS soil classification, inorganic soils with low compressibility ar (1) MH (2) SL (3) ML As per IS soil classification, clays, organic soils are represented by (1) MH (2) SL (3) ML	reduced to 100 gr. Calculate the dry density. (1) 9.81 kN/m³ (2) 14.72 kN/m³ (3) 19.62 kN/m³ (4) A soil deposit having water content 15%, specific gravity 2.5 and voids ratidegree of saturation. (1) 50% (2) 70% (3) 75% (4) Exceptional gradient in plains as per IRC (1) 1 in 90 (2) 1 in 15 (3) 1 in 40 (4) As per IS soil classification, inorganic soils with low compressibility are reported. (1) MH (2) SL (3) ML (4) As per IS soil classification, clays, organic soils are represented by