

Uttar Pradesh Power Corporation Limited

Subject : Civil Engineering

🗡 2) Sri Lanka

✓ 3) Maldives

4) Seychelles

Q.2 Who was the Prime Minister of Britain when the League of Nations was formed?

1) Henry Cecil

2) Winston Churchil

3) Lloyd George

(4) Lord Curzon

Which one measure helped to bring down the cyclone affected deaths from 10,000 in 1999 to about 20 in 2013 on the Odisha coast?

1) Building cyclone Shelters

2) Advanced Meteorological warning.

X 3) Radar and warnings to fishermen

4) Free supply of food to the villages.

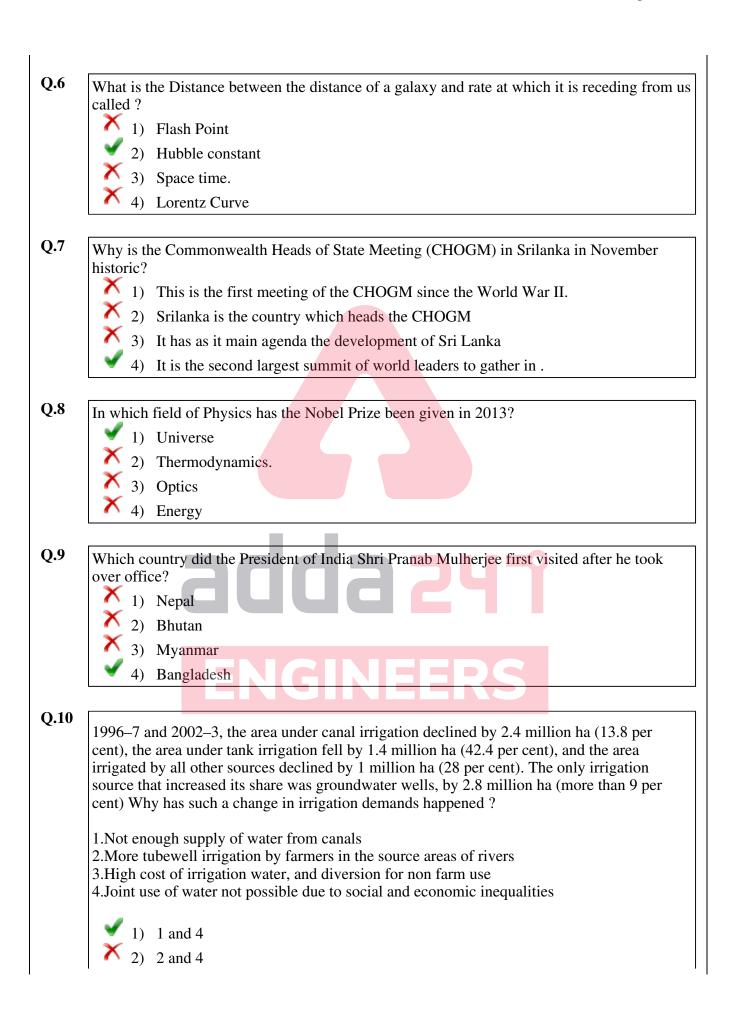
Q.4 Temperature in human body is controlled by

1) Thyroid gland

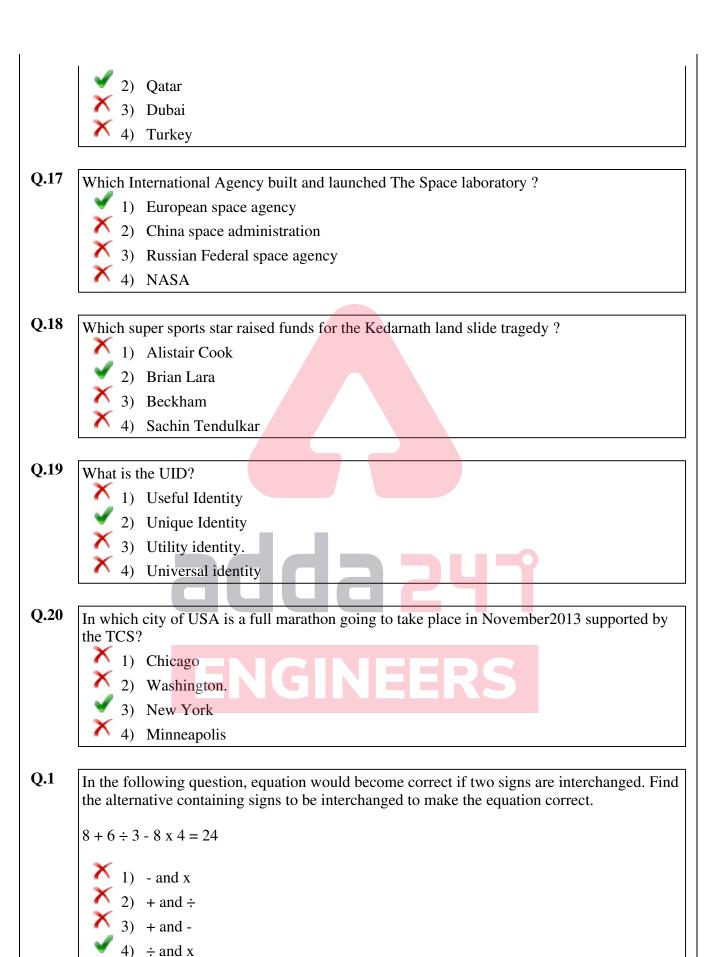
2) Adrenal gland

3) Hypothalamus gland

(4) Pituitary gland


Q.5 What was the name given to the **World war I** by historians?

1) First War.


2) European war

3) The Great war

4) Seven year War

	× 3) 1and 2
	× 4) 3and 4
	1) Jana 1
Q.11	Which feature was formed by the crashing of a meteorite near Buldhana?
	1) Pimpri Lake
	× 2) Thane Lake
	3) Chilika Lake
	4) Lonar Lake
	,,
Q.12	What is the mission of the Chandra space Telescope and Observatory launched in 1999?
	1) It spends 85% of its orbit above the belts of charged particles that surround the
	Earth.
	2) Forecast the changes in the Moon and send data to Earth.
	3) Observe the high energy activity in space like the formation of stars.
	4) Study the earth and moon movements and calculate the changes in their distances
Q.13	What is the main mission of the TARA expedition?
	1) Control the resources of the Arctic sea.
	2) Collect information on the Arctic Sea
	3) Study Ocean flora and its behavior
	4) Find reasons why the Arctic ice is melting
Q.14	Which city will host the summer olympics in year 2020?
	1) New Delhi
	2) Berlin
	3) Barcelona
	▼ 4) Tokyo
0.15	
Q.15	What is the biggest drawback for Walmart investing in India?
	1) Legal ownership will remain with the Indian counterpart.
	2) No profits can be taken without paying tax
	3) Goods have to include rural products
	4) 30 % goods have to be sourced locally
0.14	
Q.16	In which country are the issues related to human rights blocking the organisation of World
	Cup Foot ball of 2022 ?
	1) Saudi Arabia

Pour statements are followed by four conclusions numbered I, II, III and IV. Assuming the statements to be true, even if they are at variance with commonly known facts, decide which of the conclusions logically follow?

Statements: (1) All books are notes; (2) Some papers are pens; (3) No note is a paper; (4) All pens are pencils.

Conclusions: I. Some papers are books.

II. Some notes are books.

III. Some pens are notes.

IV. Some pencils are papers.

1) Only conclusion II follows

2) Only conclusions I, II and IV follow

3) Only conclusions II, III and IV follow

4) Only conclusions II and IV follow

Q.3 Suresh's house faces West. He walks 20 meters straight from the backside of his house and turns left and walks 10 meters. Then he turns right and walks 15 meters. Finally, he turns right and walks 45 meters. In which direction, is he now from his house?

2) North-East

3) South

4) South-East

Q.4 The first two letter clusters on the left of the sign '::' are related in a certain way. The same relationship holds for the second pair on the right of the sign '::' of which one is missing. Choose the missing one from among the alternatives.

DJHF: WQSU::?:TKNQ

1) GPMJ

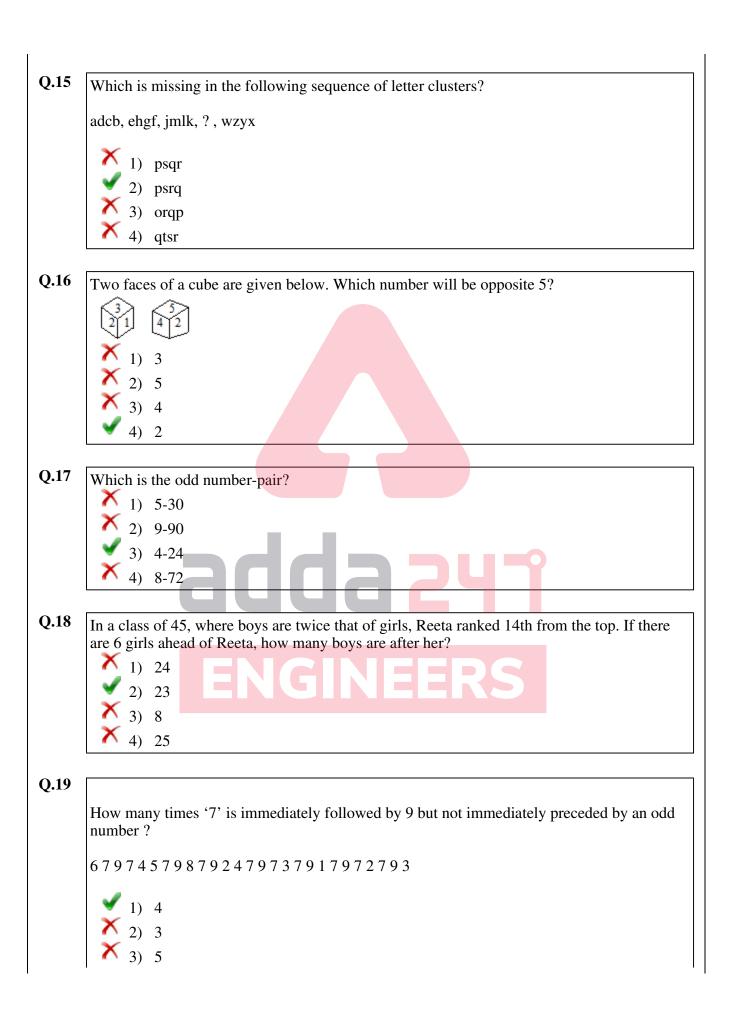
2) HQNK

3) DMJG

4) GMKI

Q.5 One of the numbers in the following number series is wrong. Which is the wrong number?

1, 2, 10, 37, 102, 226, 442


1) 103

2) 37

	× 3) 10
	× 4) 226
	.,
Q.6	Which of the following groups of letters is the odd one out?
	1) ZYCT
	× 2) LRDK
	× 3) CFMP
	4) OAEU
	., 0.120
Q.7	A boatman can row to a place 48 km distant and back in 14 hours. If he rows 4 km with the stream in the same time as 3 km against it, the speed of the boat in still water is:
	1) 7 km/hour
	2) 6 km /hour
	3) 6.5 km/hour
	4) 5 km/hour
	4) 5 km/nour
Q.8	How many triangles are there in the following figure?
	1) 28
	2) 32
	3) 22
	^ 4) 24
0.0	ENGINEEDS
Q.9	Among 5 friends, A is weaker than C but stronger than D. C is weaker and shorter than E. E
	is shorter than A, but taller than D. B is stronger than E and taller than A. Who is both the strongest and tallest?
	1) A
	× 2) E × 3) C
	3) C
	✓ 4) B
Q.10	
	In a certain code, the word NUMERAL is written as ELNUARM. How would the word
	MONSTER be written in that code? 1) SRMFOTN
	1) SRMEOTN

	✓ 2) SRMOETN
	3) STNOERM
	4) SMREONT
Comp	prehension:
	A solid cube is painted green on two opposite faces and red on the remaining ones. It is then cut into 64 smaller cubes. Answer the following questions.
Q.11	SubQuestion No. :1
	How many smaller cubes will have only 2 faces painted, one with red and the other with green?
	1) 16
	× 2) 24
	3) 32
	* 4) 8
Q.12	SubQuestion No. :2
V.12	How many smaller cubes will have only two red-colored faces?
	× 1) 10
	2) 12
	3) 8
	4) 16
Q.13	
Q.13	Choose the missing number from among the alternatives.
	7 41 4 12 50 9 15 90 ?
	$\times_{1)}$ 5
	2) 11
	3) 7
	^ 4) 9
Q.14	DLO manne Die the methor of O. DvO manne Die the fethor of O. D.O manne Die the cictor of
V.11	P+Q means P is the mother of Q. PxQ means P is the father of Q. P-Q means P is the sister of Q. Which of the following shows that B is the aunt of A?
	✓ 1) B-DxA
	2) B-DxC+A
	3) A-DxB
	× 4) BxA-D

	× 4) 2
	4) 2
)	If in each of the following numbers, the positions of the first and the fourth digits are interchanged and so also the second and the third digits, what will be the difference between the highest and the lowest numbers after rearrangement?
	2945, 7321, 5789, 6562, 4953
	1) 6398
	2) 6848
	× 3) 8645
	4) 8638
	- 1
	कौन-सा सरकारी पत्र नहीं है?
	 1) एक राज्य सरकार से दूसरी सरकार को लिखा गए पत्र 2) राज्य सरकार द्वारा अपने अधिनस्त विभागों को लिखा गए पत्र
	3) केंद्र सरकार द्वारा राज्य सरकार को लिखा गया पत्र
	4) एक अधिकारी द्वारा दुसरे अधिकारी को लिखा गया पत्र
	निम्नलिखित में से शब्द का श्द्ध रूप कौन-सा है?
	1) विधवंश
	🗙 2) विध्वष
	🗙 3) विध्वंश
	 ✓ 4) विध्वंस
	'निर्माण' का विलोम शब्द कौन-सा है?
	× 2) ध्वंस
	🔀 3) नाश
	🗡 ४) नष्ट
	कौन-सा वाक्य शुद्ध है?
	1) प्रधानमंत्री का निवेदन करना चाहता हूँ
	2) प्रधानमंत्री को निवेदन करना चाहता हूँ
	अ प्रधानमंत्री से निवेदन करना चाहता हूँ
	 ४ ४) प्रधानमंत्री के लिए निवेदन करना चाहता हुँ

X	1)	विष
\checkmark	2)	स्वर्ण
X	3)	पर्वत

🗡 4) सर्प

Q.6 जहाँ जाना कठिन हो वाक्यांश के लिए उपयुक्त शब्द होगा-

1) दुर्गम

2) दुर्बोध3) दुर्गति

Comprehension:

आप लोगों ने क्या कभी शुद्ध हृदय से इस पर विचार किया है कि माता, मातृभूमि और मातृभाषा का आप पर कुछ ऋण भी है अथवा नहीं! एक आपको जन्म देती है, एक की गोद में खेल कूदकर और खा-पीकर आप पुष्ट हुए हैं और एक आपको अपने भावों, विचारों को प्रकट करने की शक्ति दे, आपके सांसारिक जीवन को सुखी बनाती है, जिसका आप पर इतना उपकार है जिसके लिए कुछ करना क्या आपका परम कर्त्तव्य नहीं है? प्यारे भाइयों! उठो, आलस्य छोड़ो, कमर कसो और अपनी मातृभूमि की सेवा में तत्पर हो जाओ। अपने को मातृऋण से मुक्त करें, संसार में सपूत कहलाओ और मातृ सेवकों में अपनी कीर्तिं छोड़ जाओ । हाँ, ध्यान रहै, यह व्रत साधारण नहीं है। इसके व्रती बनकर रह<mark>ना तलवार की धार प</mark>र चलने के समान है।

Q.7 SubQuestion No.:1

इस अवतरण में किसकी सेवा करने के लिए कमर कसने को कहा गए है?

🗡 1) जन्मदायी माता की

🗡 2) भावों और विचारों की

3) मात्भाषा की

4) जन्मभूमि की

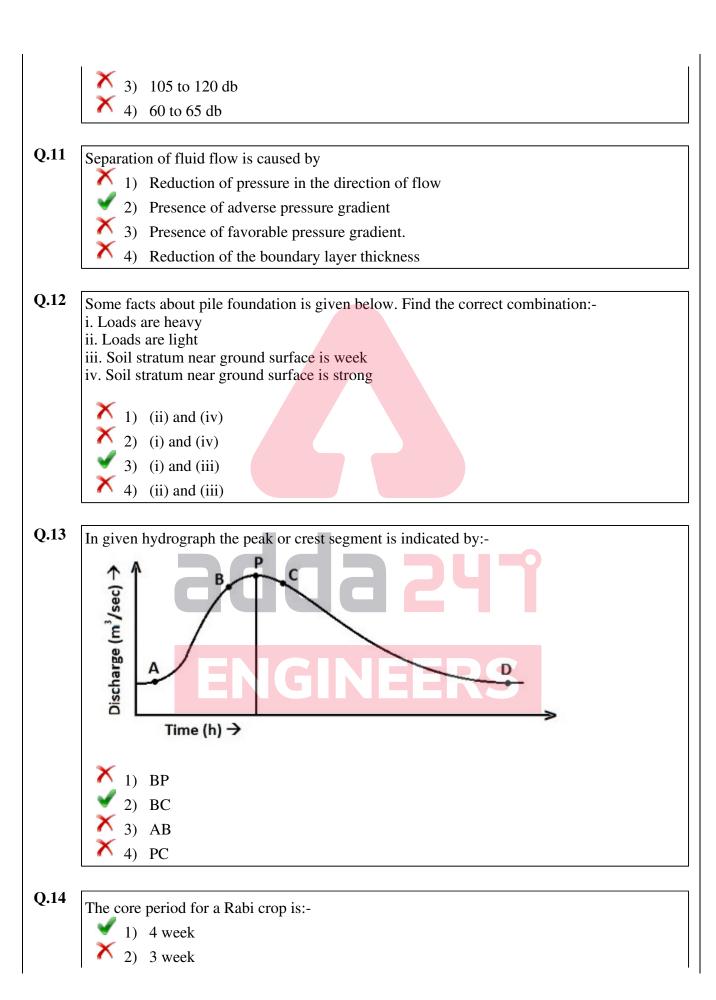
SubQuestion No.:2 **Q.8**

तलवार की धार पर चलने से आशय है -

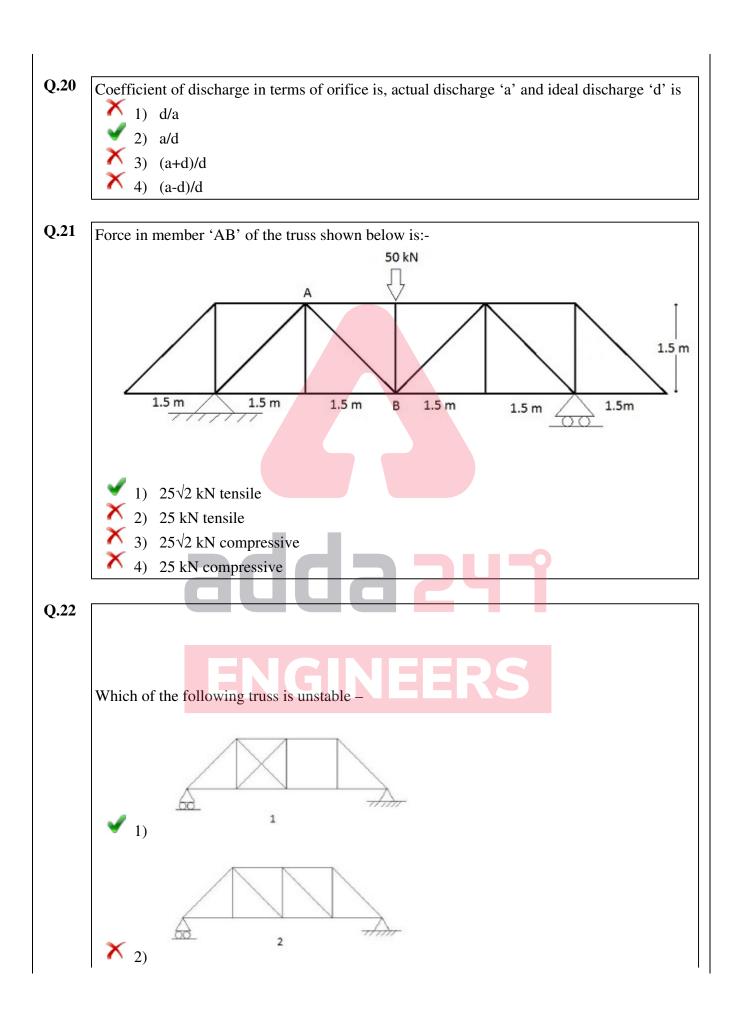
🗡 1) तलवार गाड़ कर उसकी धार पर चलना

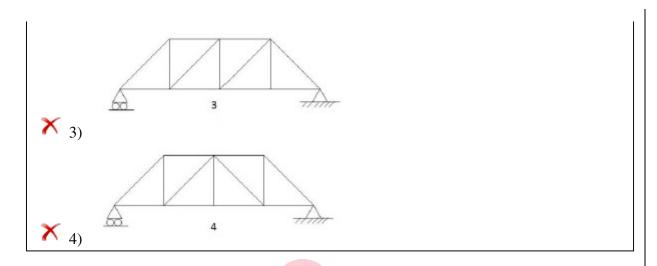
2) कार्य का अत्यधिक कष्ट साध्य होना

🗡 3) व्रती को भयभीत करना

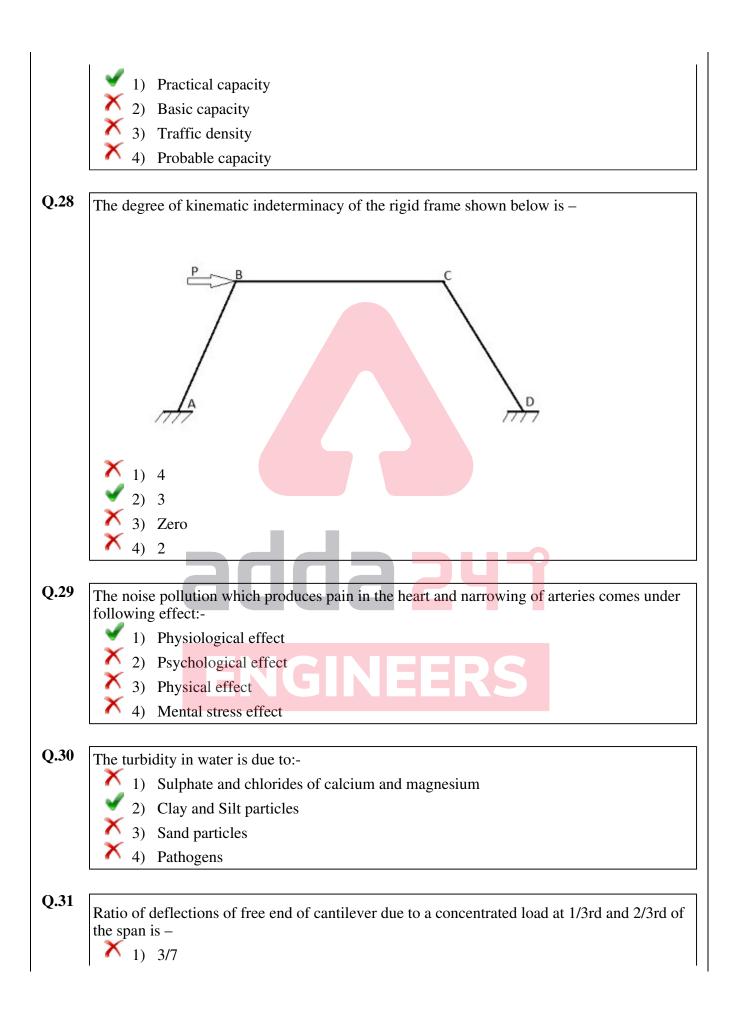

4) अपने को संकट में डालना

Q.9 SubQuestion No. :3


हमें अपने भावों को प्रकट करने की शक्ति कौन देती है

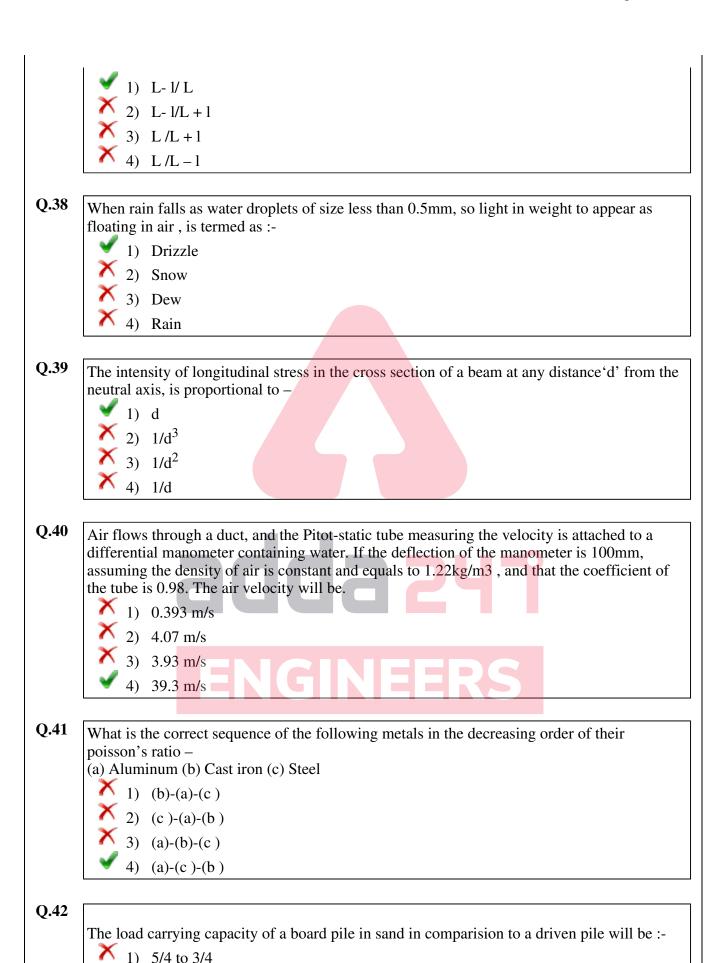

	🗡 1) जन्मदायी माँ
	2) कविता
	3) मातभाषा
	3) मातृभाषा4) मातृभूमि
	n integral
Q.10	निम्नलिखित मुहावरों का सही अर्थ कौन-सा है? 'अंधे की लाठी'
	1) एकमात्र सहारा
	🔀 2) काली लाठी
	3) मुर्ख व्यक्ति
	X 3) मुर्ख व्यक्ति X 4) टूटी ह्ई लाठी
Q.1	A beam carries a uniformly distributed load throughout its length. In which of the following configurations, will the strain energy be maximum-
	1) Cantilever
	× 2) Fixed beam
	3) Simply supported beam
	× 4) Propped cantilever
	, 11
Q.2	A dimensionless group formed with the variables ρ (density), ω (angular velocity), μ
	(dynamic viscosity) and D (characteristic diameter) is
	1) ρμ D/ω
	$(X 2) \rho \omega \mu / D^2$
	\times 3) $\omega \mu D^2/\rho$
	\checkmark 4) $\mu / \rho \omega D^2$
Q.3	
Ų.S	Which one of the following represents the specific speed of turbine? 1) NP ^{1/2} /H ^{5/4}
	1) NP ^{1/2} /H ^{3/4}
	2) NQ ^{1/2} /H ^{3/4}
	2) NQ ^{1/2} /H ^{3/4} 3) NQ ^{1/2} /H ^{5/4} 4) NP ^{1/2} /H ^{3/4}
	4) NP ¹¹² /H ³¹
Q.4	If is the blade angle at the outlet, then the maximum hydraulic efficiency of an ideal impulse
	turbine is-
	\times 1) $(1+\sin\alpha)/2$
	\checkmark 2) $(1+\cos\alpha)/2$
	\times 3) $(1-\sin\alpha)/2$
	\times 4) $(1-\cos\alpha)/2$

Q.5	The ratio of elongations of conical bar due to its own weight and that of prismatic bar of same length is –
	1) 1/3
	× 2) 1/5
	3) 1/2
	^ 4) 1/4
0.6	
Q.6	In a wet soil mass, air occupies 1/6 of its volume and water occupies 1/3 of its volume. The void ratio of the soil is:-
	1) 0.67
	2) 1
	3) 0.25
	× 4) 0.5
Q.7	The reading taken on a station by level, whose elevation is known, is termed as:-
	1) Intermediate sight
	× 2) Fore bearing
	× 3) Fore sight
	4) Back sight
	4) Dack sight
Q.8	The negrountees of fresh water evailable as noter involves some and to total fresh water
V. 0	The percentage of fresh water available as polar ice/glaciers compared to total fresh water is:-
	1) 69.61%
	2) 30%
	3) 0.04%
	4) 0.261%
0.0	
Q.9	By approximate method, the computation of N-component at the time of sudden drawdown
	condition, the weight is considered as:-
	1) Dry unit weight
	2) Saturated unit weight
	3) Bulk unit weight
	4) Submerged unit weight
Q.10	
	The acceptable noise level for banks/big offices are:-
	1) 65 to 105 db
	2) 50 to 60 db

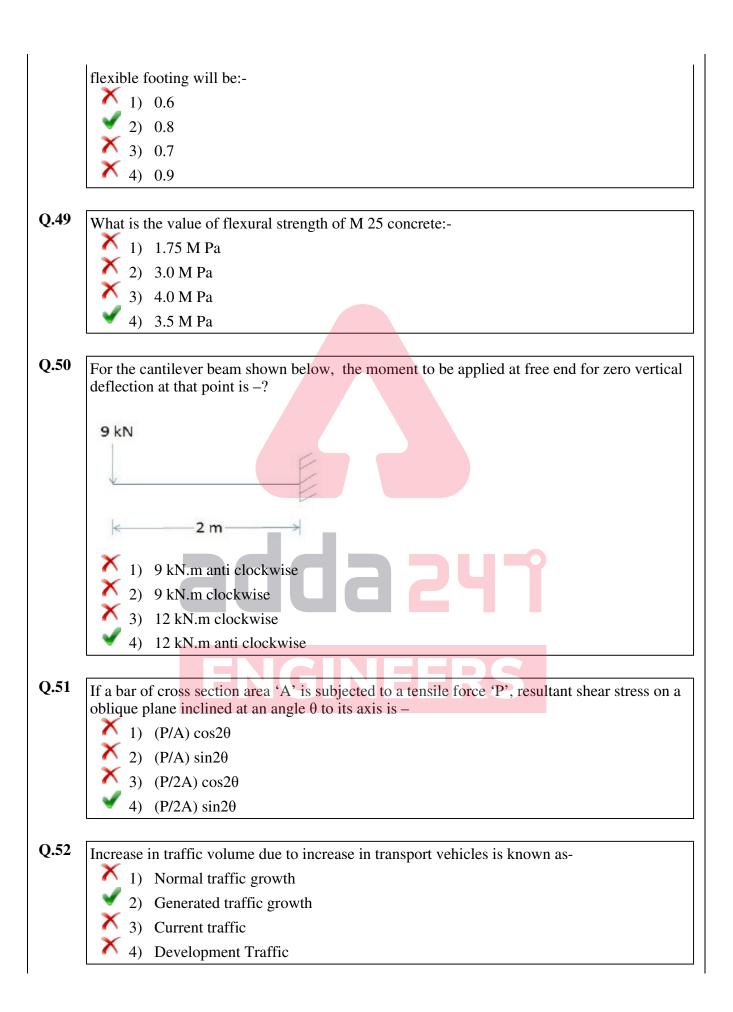


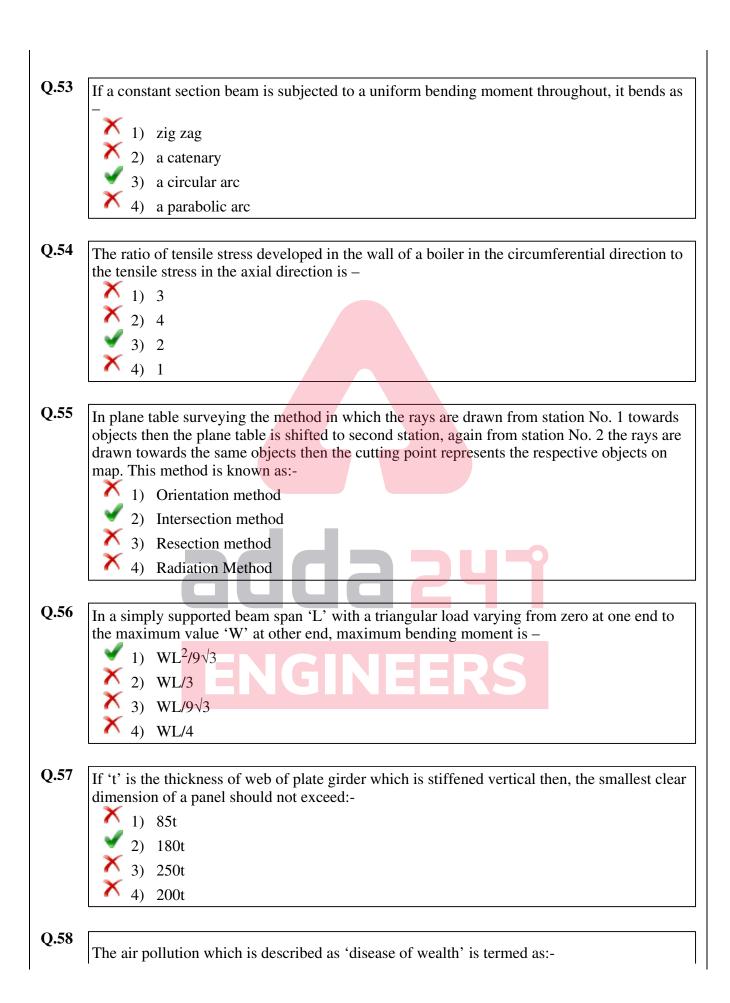
	× 3) 2 week
	× 4) 5 week
0.15	
Q.15	Unfactered maximum bending moments at a section of a reinforced concrete beam are 50, 80, 120 and 180kNm under dead, live, wind and earthquake load respectively. The design moment as per IS: 456-2000 for limit state of collapse (flexure) is:-
	1) 250 kNm
	2) 372 kNm
	3) 195 kNm
	× 4) 315 kNm
Q.16	When the water table rises to the ground level then the ultimate bearing capacity of a shallow foundation on sand is reduced to following percentage.
	1) 30%
	2) 20%
	3) 50%
	* 4) 70%
Q.17	If a tension member is subjected to possible reversal of stresses due to wind, the slenderness ratio of the member should not exceed -
	1) 350
	× 2) 180
	× 3) 250
	× 4) 200
Q.18	The permissible limit of Biochemical – oxygen demand in water to be supplied in houses should be (in PPM)
	1) Zero
	2) 150
	3) 100
	× 4) 200
Q.19	On national and state highway the speed limit sign are fixed some distance ahead from where the speed limit actually start. This distance should be:-
	1) 80m
	2) 100m
	3) 120m
	× 4) 60m

- Q.23 The rise and fall along the road is known as:-
 - 1) Super elevation
 - 2) Slope
 - × 3) Camber
 - × 4) Side slope
- Q.24 Which one of the following sections performs better on the ductility criterion:-
 - 1) Under reinforced section
 - 2) Balanced section
 - (X) Non prismatic section
 - (4) Over reinforced section
- Q.25 Taylor's –stability chart are based on the total stresses using:-
 - 1) Method of slices
 - 2) Culmann's method
 - Δ 3) $\Phi_{\rm u} = 0$ Analysis
 - 4) Friction circle method
- Q.26 If the diameter of longitudinal bars of a square column is 16mm, the diameter of lateral ties should not be less than
 - × 1) 6 mm
 - × 2) 2mm
 - **✓** 3) 4 mm
 - × 4) 8 mm
- Q.27 Maximum number of vehicles that can pass a given point on a lane during one hour without creating unreasonable delay is known as -

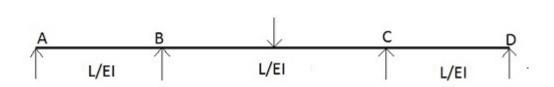

2) 4/7 3) 2/7 4) 1/7

- Q.32 According to I.S. classification system, the soil can be classified into:-
 - 1) 15 groups
 2) 7 groups
 3) 3 groups
 4) 18 groups
- What will be the stream function of flow of an incompressible fluid is defined by u=2, v=8x.


 1) $\psi=2x^2+2xy+c$.


 2) $\psi=2x+8y^2+c$.
 - 2) $\psi = 2x + 8y^2 + c$. 3) $\psi = 2y + 8x + c$ 4) $\psi = -4x^2 + 2y + c$.
- Q.34 The equation of a parabolic arch of span '1' and rise 'h' is given by:
 1) $y = (h/l^2)x (l-x)$
 - 2) $y = (3h/l^2) x(l-x)$ 3) $y = (2h/l^2) x (l-x)$ 4) $y = (4h/l^2) x(l-x)$
 - If telescope of a theodolite can rotate about its horizontal axis in the vertical plane
- Q.35 If telescope of a theodolite can rotate about its horizontal axis in the vertical plane completely then the theodolite is termed as:

 1) Optical theodolite
 - 2) Azimuth theodolite
 3) Transit theodolite
 4) Non-transit theodolite
- Q.36 From high level water resource, the water supply system used is termed as:-
 - 1) Pumping and storage system.
 2) Pumping system
 - 3) Gravity system
 - X 4) Dual system
- Q.37 If (L) is the total head at inlet and (l) is the head loss due to friction, efficiency of power transmission through a straight pipe is given by



	× 2) 3/4 to 2/3
	3) more than 5/4
	✓ 4) 2/3 to 1/2
Q.43	For a particular crop during its base period the unit water flowing day and night to irrigate
	the crop area is known as:- 1) Duty
	2) Crop period
	3) Base period
	4) Delta
	4) Delta
Q.44	In a simply supported beam of span (L+2a) with equal overhang (a) carries a uniformly
•	distributed load over the whole length. Bending moment changes sign if –
	\times 1) L = 2a
	× 2) L <2a
	\times 3) L = 3a
	✓ 4) L>2a
Q.45	Web crippling generally occurs at the point where:-
	1) Concentrated load acts
	2) Shearing force is maximum
	3) Deflection is maximum
	4) Bending moments is maximum
Q.46	Which one of the following options is true for combined system of sewerage system:-
	1) Sewage and rain water
	2) Dry weather flow and rain water
	3) Sewage and industrial waste
	7 4) Industrial waste and rain water
Q.47	The displacement method is also referred to as which one of the following –
	1) Minimum strain energy method
	2) Consistent deformation method
	3) Slope deflection method
	4) Maxwell Mohr method
0.40	
Q.48	The ratio of immediate settlement of a rigid footing to the maximum settlement of an equal

	*	
	Charles and the contract of th	Natural pollution
	_	Industrial pollution
		Pollution due to transportation
	(4)	Radioactive pollution
O 50		
Q.59	the bend	norage value of a hook is assumed four times the diameter of the bar if the angle of
		60°
	(h)	30°
		45°
		40°
	.,	
Q.60	Solid wa	ste treatment by pyrolysis refers to
	Contract of the Contract of th	Treating with chemicals before heating
	City and	No heating
	× 3)	Heating in presence of air
		Heating in absence of air
Q.61		ch increase in pressure will be, if a uniform surcharge of 120kN/m ² is placed on the
		with $\Phi = 30^{\circ}$
	-	12kN/m ²
	Clin and	120kN/m ²
	3)	30kN/m ²
	4)	40kN/m ²
0.62		LENCINEEDS .
Q.62	Charles and the contract of th	eria which survive on oxygen or oxygen dissolved in water are known as:-
		Facultative and Anaerobic both
	$\left(\begin{array}{c} 2 \\ \times 2 \end{array}\right)$	Aerobic
	X (1)	Facultative Anaerobic
	* 4)	Anaerobic
Q.63		
Cost		
	_	
	For a syr	mmetric continuous beam shown below, which is the correct distribution at B –

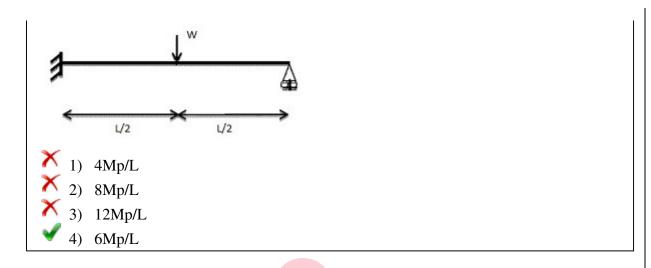
- 1) ${}^{\delta}_{BA}$: ${}^{\delta}_{BC}$ =3:8
- 2) $\delta_{\text{BA}}: \delta_{\text{BC}} = 3:4$ 3) $\delta_{\text{BA}}: \delta_{\text{BC}} = 1:2$

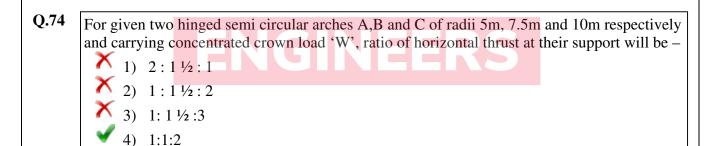
Q.64 The maximum depth of foundation, according to the Rankine's formula will be:-(Given that $q = 180 \text{ KN/m}^2$, $\gamma = 20 \text{KN/m}^2$ and $\Phi = 30^\circ$)

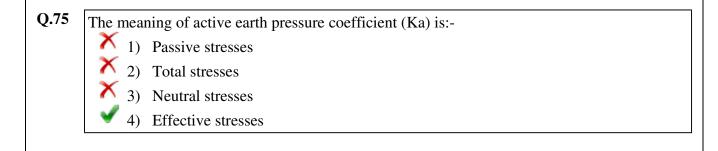
- 1) 0.8m
- 2) 1m
- 3) 2m
- 4) 0.5m

Waste item that is usually not recycled Q.65

- 1) Plastic waste
 - 2) Vegetable waste
- 3) Glass waste
- 4) Paper waste

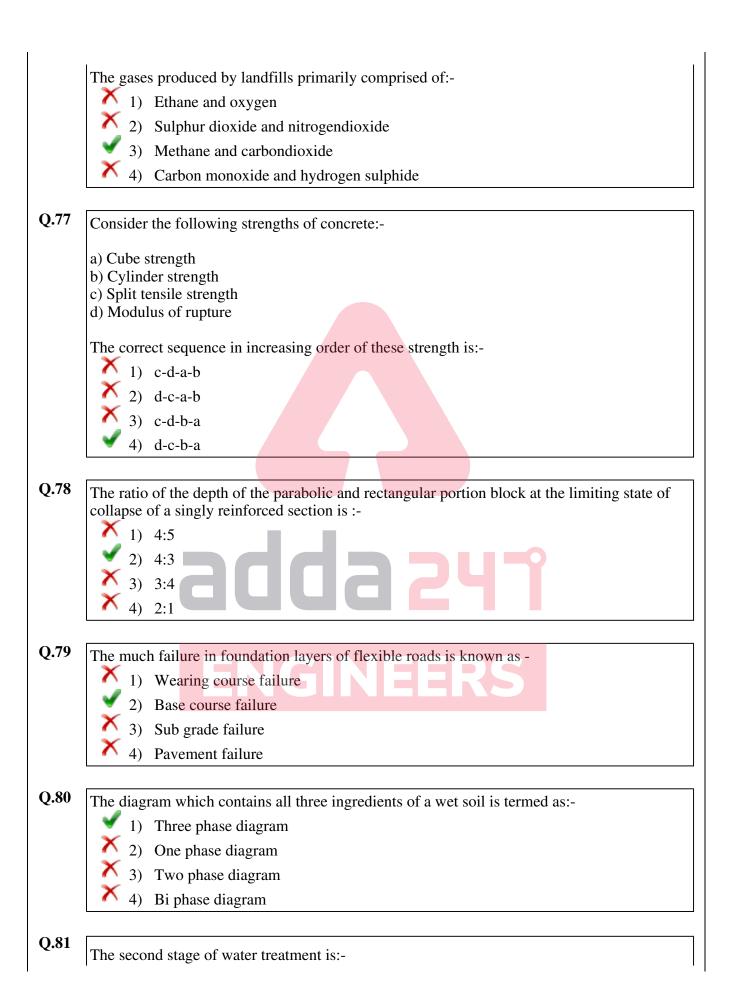

Q.66 A solid cube is subjected to equal normal forces on all its faces. Volumetric strain will be how many times of the linear strain.


- 3) 1


Q.67 Which one of the following is used to kill the pathogens?

1) Chlorination

	× 2) Oxidation
	× 3) Nitrification
	× 4) Ozone
Q.68	The soil formed by weathering action on rock and remain at the place of formation is called
	as:-
	1) Alluvial soil
	2) Residual soil
	3) Marine soil
	4) Aeolin soil
0.60	
Q.69	If 'p' and 'd' are pitch and gross diameter of rivets, the efficiency of the rivets joint is:-
	1) p/(p-d)
	2) p/(p+d) 3) (p-d)/p
	3) (p-d)/p
	X 4) (p+d)/p
Q.70	
Q.70	A simply supported beam with two equal spans carries uniformly distributed load 'W' on entire length of beam. If each span has length 'L' the bending moment at the central support
	is –
	\times 1) WL ² /12
	\times 2) WL ² /4
	\times 3) WL ² /2
	$4) WL^{2}/8$
Q.71	The following assumption is not made for the friction circle method of slope stability
	analysis:-
	1) The resultant passes through the centre of friction circle.
	2) Friction is fully mobilised.
	3) The resultant is tangential to the friction circle.
	4) Total stress analysis is applicable.
Q.72	
Q ···=	
	The plastic moment capacity of the propped cantilever shown below is 'Mp' .What is the value of the collapse load:-
	varied of the contapse foud.



Q.76

file://C:\Users\IONASSESSMENT\Desktop\KEY_ACTUAL_uppcl\Question Paper with c... 1/14/2014

× 1) Disinfection

2) Mixing and Coagulation

3) Sedimentation

× 4) Filtration

Q.82 Minimum area of tension reinforcement in a beam shall be greater than:-

✓ 1) 0.85bd/fy

2) 0.87 fy/bd

3) 0.4bd fy

× 4) 0.04 bd

Q.83 Which of the following is correct relation in terms of absolute pressure (P_{abs}) , atmospheric pressure (P_{atm}) and (P_{gauge}) pressure Pgauge.

1) $P_{abs} = P_{gauge} + P_{atm}$

 \sim 2) $P_{\text{gauge}} = P_{\text{atm}} - P_{\text{abs}}$

 \times 3) $P_{atms} = P_{abs} + P_{gauge}$

 \checkmark 4) $P_{abs} = P_{gauge} - P_{atm}$

Q.84 In doubly reinforced beams, the percentage of the maximum compression reinforcement of the gross cross sectional area of beam should not exceed:-

1) 2%

× 2) 4%

× 3) 5%

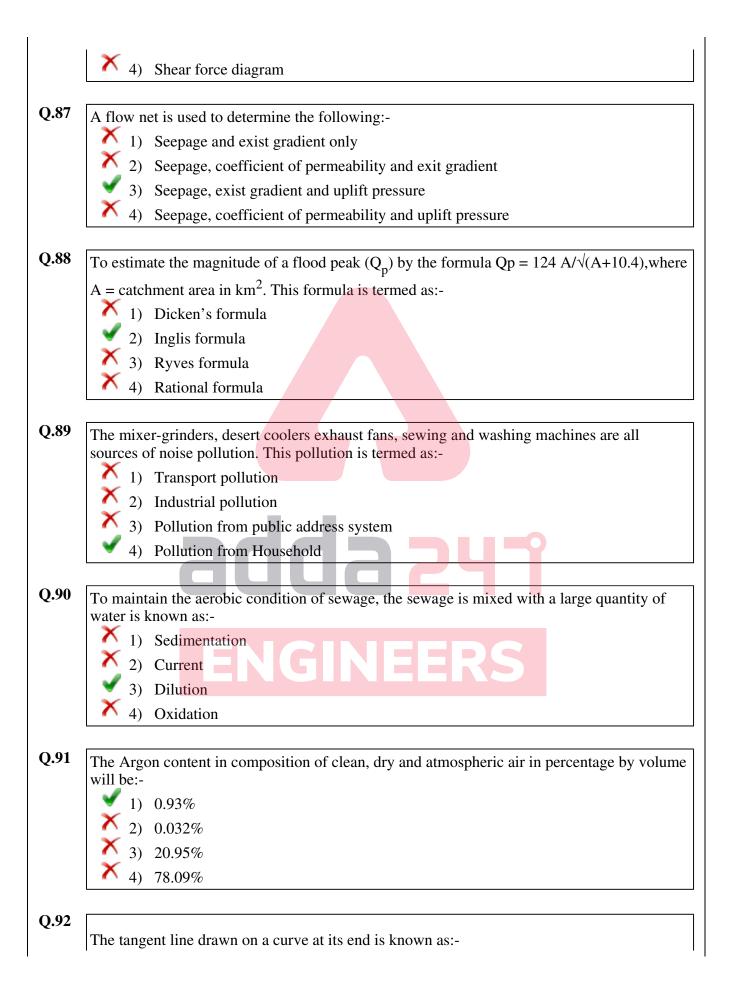
X 4) 3%

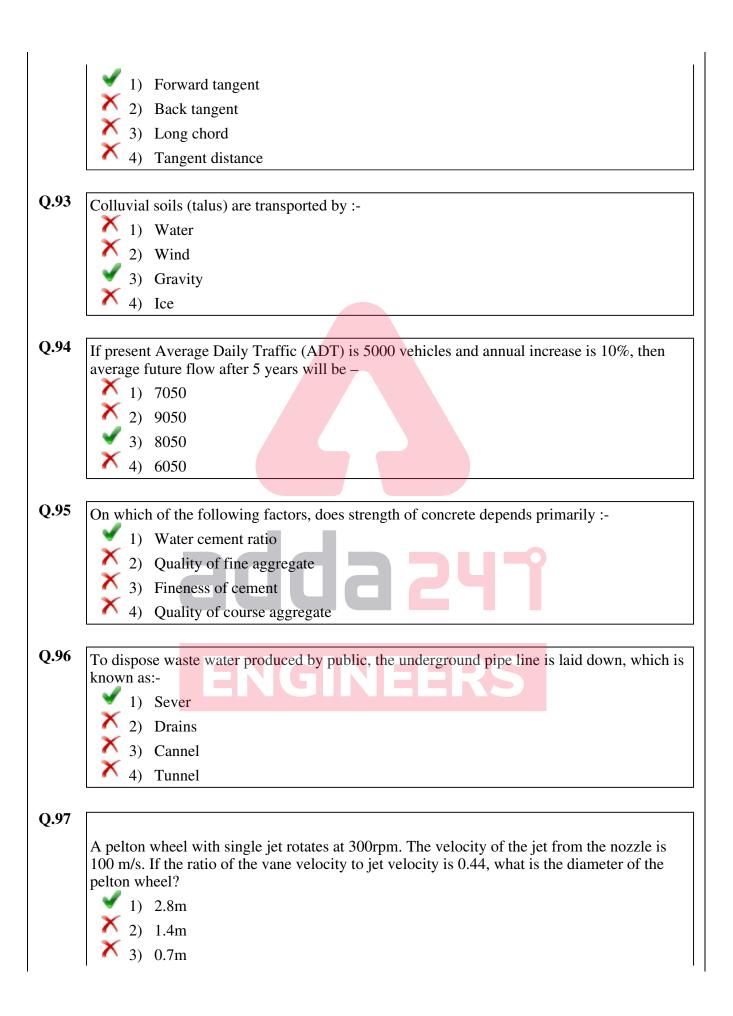
Q.85 In rolled steel beams, shear force is mostly resisted by:-

1) Web only

2) Web and flanges together

3) Flanges only


× 4) Neutral axis


Q.86 A diagram which shows the variation of the axial load at all sections along the span of a beam is –

1) Thrust diagram

2) Bending moment diagram

X 3) Stress diagram

× 4) 2.1m

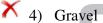
Q.98

A 2-D flow field is defined as

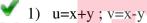
$$\vec{V} = \hat{\imath}x - \hat{\jmath}y.$$

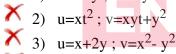
The equation of stream line passing through the point (1,1)

- 1) xy-1=0
- 2) x-y=0
- 3) 2x+2y=0
- 4) xy=0


Q.99

The soil which can store water and allow a small quantity to flow through it over a long period is called:-


- 1) Aquifer
- 2) Aquitard
- 3) Aquifuge
- 4) Aquiclude


In-situ vane shear test is used to measure shear strength of:-

- 1) Sandy soil
- 2) Stiff clays
- 3) Very soft and sensitive clays

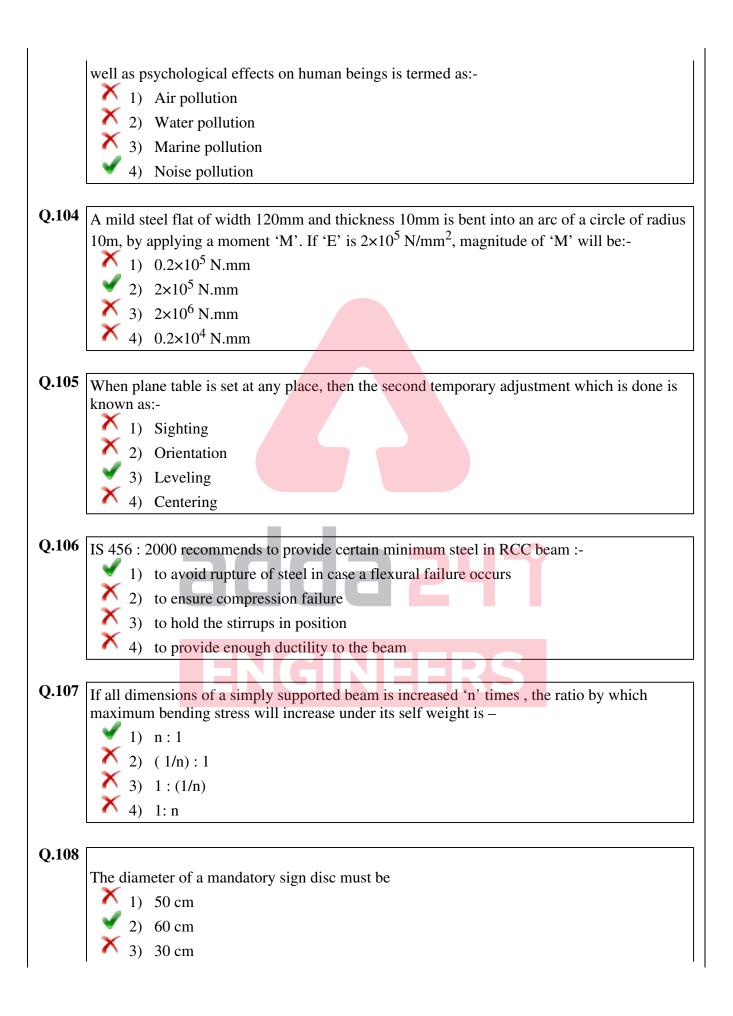
Q.101 Which of the following sets of equation represent possible 2-D incompressible flows?

 \times 4) u=4x+y; v=x-y²

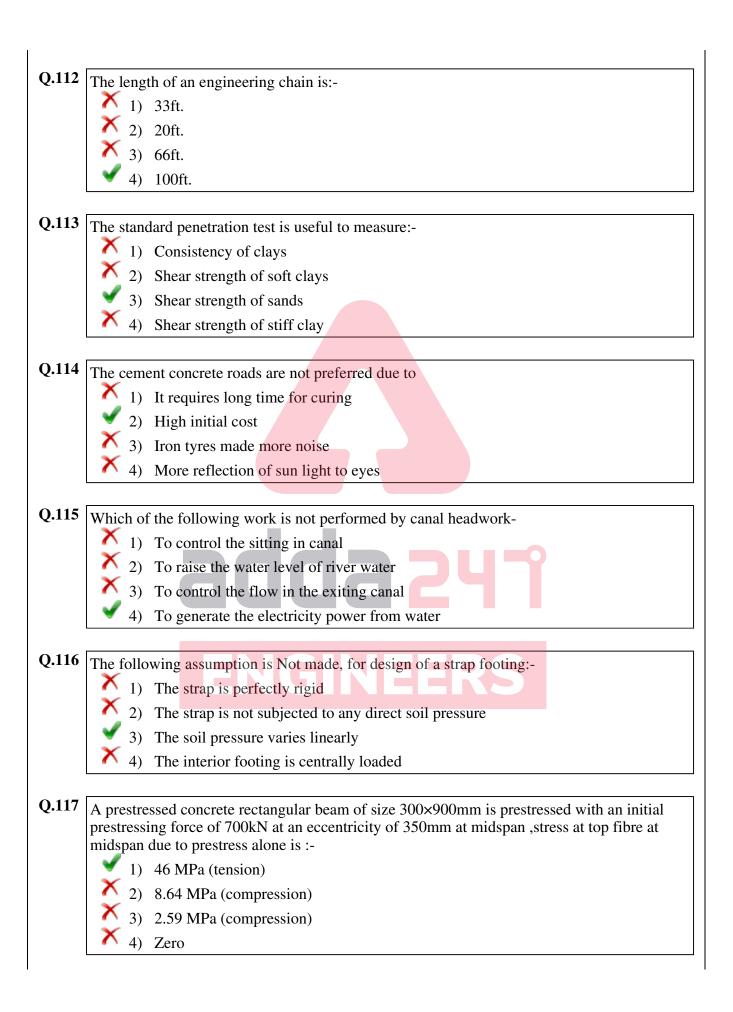
Q.102

The particulate which is emitted by combustion of petroleum in automobiles and which affects hemoglobin formation is:-

1) Lead


2) Mercury

3) Nickel


4) Cadmium

Q.103

The pollution which has far-reaching consequences and has many physical, physiological as

Q.118

The velocity field in a fluid medium is given by

$$\vec{V} = 3xy^2 \hat{i} + 2xy\hat{j} + (2zy + 3t)\hat{k}$$

Find the magnitudes and direction of translational velocity at (1,2,1) and at time t=3.

- \checkmark 1) $12\hat{i} + 4\hat{j} + 13\hat{k}$
- $\begin{array}{ccc} \times & 2 & 2\hat{\imath} + \hat{\jmath} + 5\hat{k} \\ \times & 3 & 3\hat{\imath} + 2\hat{\jmath} + 5\hat{k} \end{array}$
- $-12\hat{\imath} + 4\hat{\jmath} + 13\hat{k}$

Q.119

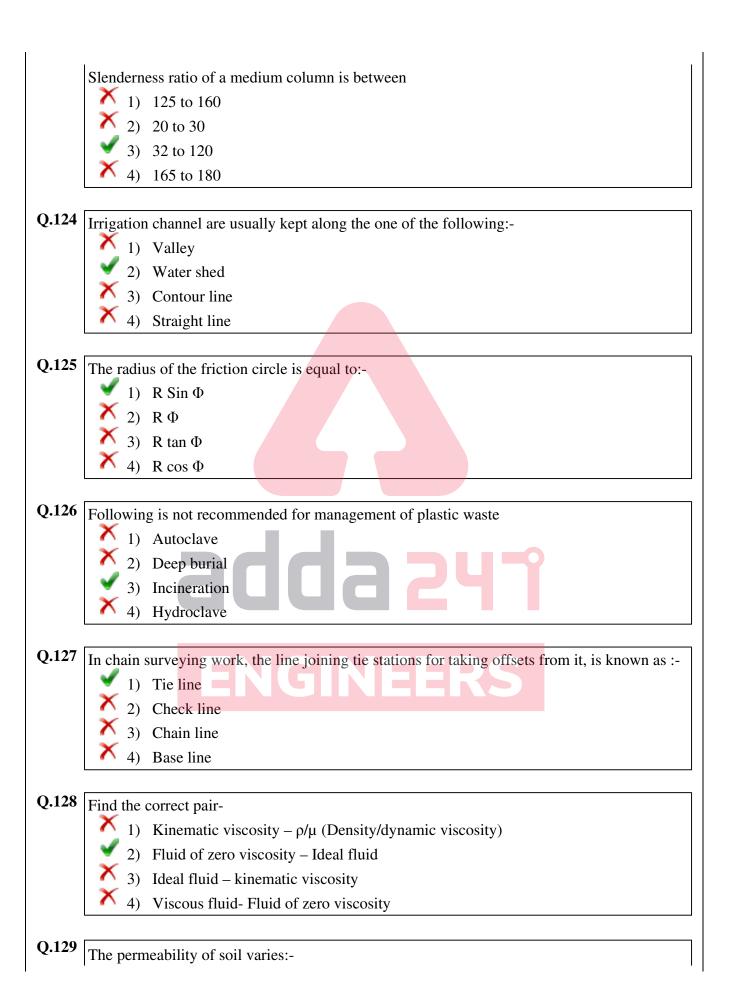
The noise pollution produced by tractors, thrashers harvesters etc. can be categorized under:-

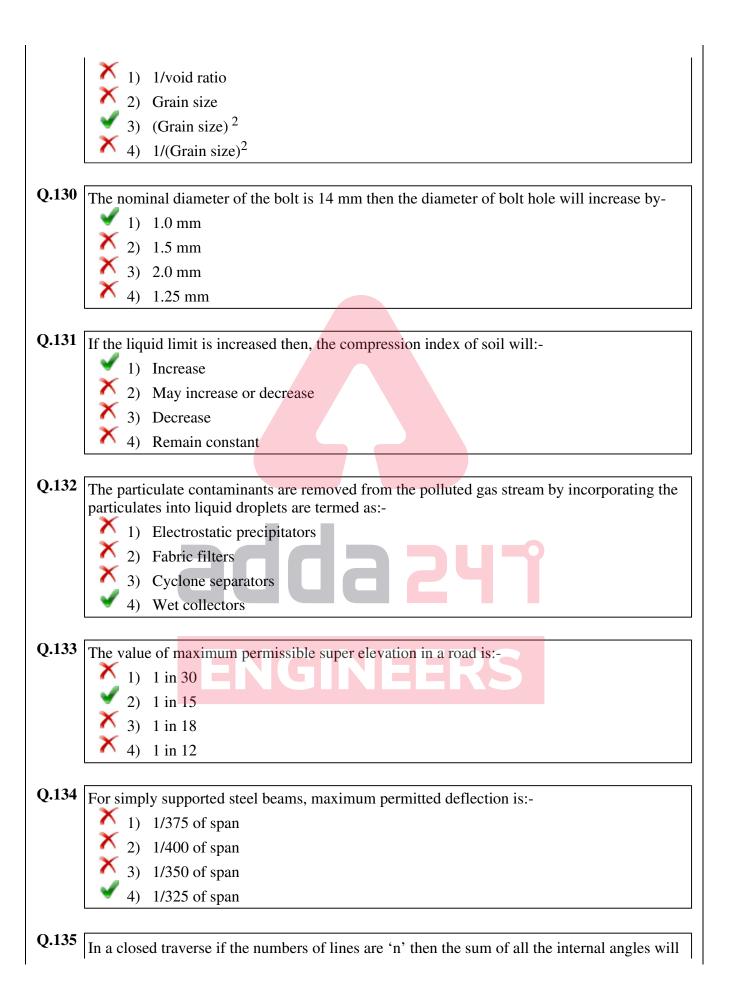
- 1) Agricultural machines pollution
- 2) Household pollution
- 3) Transport pollution
- 4) Defense equipment pollution

Q.120 Effective length of a column effectively held in position and festrained in directions at both ends is:-

- 2) 1.5L
- 3) 0.85L
- 4) 0.67L

Q.121 If a curve is made of two or more simple circular arcs in one direction and are meeting at a common tangent, such curve is known as :-


- 1) Transition curve
- 2) Reverse curve
- 3) Simple circular curve
 - 4) Compound curve

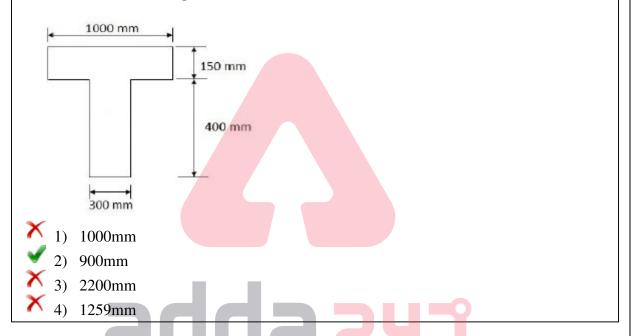

Q.122

The modular ratio 'm' of a concrete whose permissible compressive stress is 'C', may be given by:-

- 1) m = 700/3C
- 2) m = 2800/3C
- 3) m = 3500/3C
- 4) m = 1400/3C

Q.123

be (in Right Angles)


1) 2n-4

2) 4n-2

3) n+2

4) 2n+4

Q.136 A simply supported isolated 'T' beam of 6m span shown below is used as a walkway. The effective width of the flange is:-

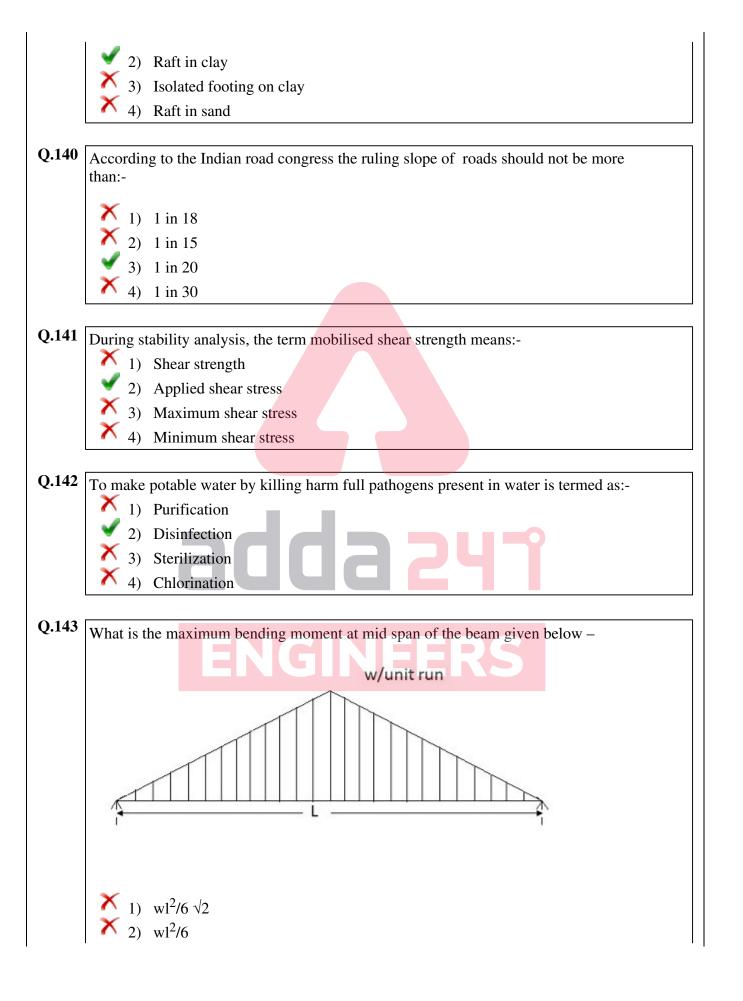
Q.137 Allowable disposable rate of application of sludge on land is determined by:-

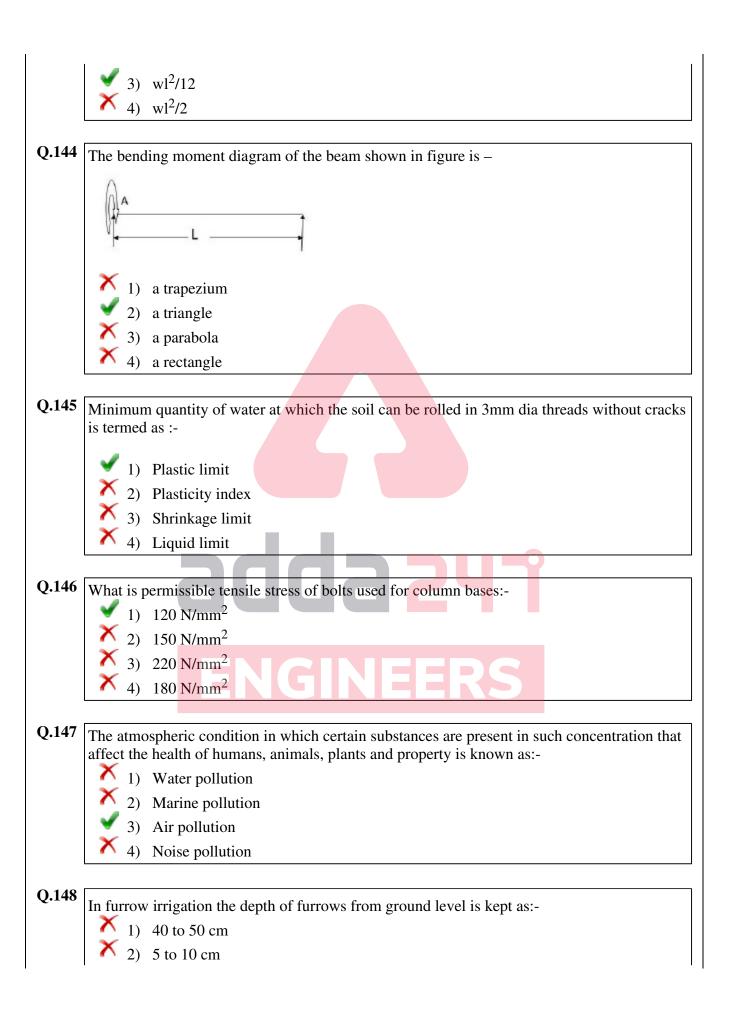
1) Carbon content of sludge
2) Potassium content of sludge

3) Nitrogen content of sludge

4) Phosphorous content of sludge

Q.138 A shaft rotating at 150rpm is subjected to a torque of 1500 N.m. Horse power transmitted by the shaft is –


 $\begin{array}{c} 2) & \pi \\ \end{array}$


У 3) 10π

4) 1/10π

Q.139 The maximum permissible settlement is, in case of:-

1) Isolated footing on sand

3) 10 to 20 cm

4) 20 to 30 cm

Q.149 The line joining the centre of objective glass to the centre of cross wires is termed as:-

1) Turning axis of telescope

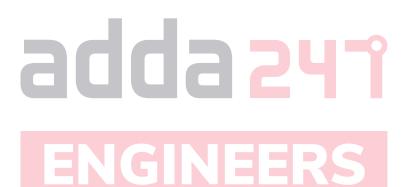
2) Stadia line

3) Optical axis of telescope

4) Line of collimation

Q.150 When pressure drag over a body is large as compared to the friction drag, then the shape of the body is that of-

1) a bluff body


2) An aerofoil

3) a-2-dimensional body

4) A streamlined body

