Maximum : 100 marks

Time : 1 hour and 30 minutes

1. Which of the following is not an elastic material? (A) Neoprene (B) Nylon (C) Celluloid (D) Resilin 2. Find the thermoplastic material from the following : (A) Polystyrenes (B) Polyurethane (C) Phenolformaldehyde resins (D) Polyimide 3. 1 kgf = _____ N (A) 98.1 (B) 1000 (C) 100 (D) 9.81 4. The internal opposite force to external load per unit area is known as : (A) Strain (B) Stress (C) Tensile force (D) Compressive force The property by virtue of which certain materials return back to their original position after 5. the removal of external force is : (A) Plasticity (B) Elasticity (C) Tenacity (D) Toughness 6. What is the unit of Young's modulus? (A) N/mm^2 (B) No unit (C) N None of these (D) 7. Which law states the relationship between stress and strain? Newton's law Joule's law (A) (B) (C) Hooke's law Pascal's law (D) 8. In stress-strain curve after which point the straight line relation between stress and strain ceases : Elastic limit Yield point (A) (B) (C) Maximum stress (D) Breaking point

Α

[P.T.O.]

9.	The unit o	of strain is :		
	(A)	Ν	(B)	N/mm ²
	(C)	No unit	(D)	None of these
10.	The ratio	between change in dimension to th	e original.	dimension is called :
	(A)	Stress	(B)	Young's modulus
	(C)	Poisson's ratio	(D)	Strain
11.	The ratio	between lateral strain and linear s	train is :	
	(A)	Poisson's ratio	(B)	Volumetric stress
	(C)	Bulk modulus	(D)	Modulus of rigidity
12.	The minin	mum load at which a material deve	lops failur	e is called :
	(A)	Compressive load	(B)	Tensile load
	(C)	Breaking load	(D)	Ultimate load
13.	The ratio	between the change in length to or	iginal leng	gth is :
	(A)	Volumetric strain	(B)	Tensile stress
	(C)	Linear strain	(D)	Lateral strain
14.	Which ela	astic constant is denoted by the lette	er "K"?	
	(A)	Shear stress	(B)	Bulk modulus
	(C)	Modulus of rigidity	(D)	Young's modulus
15.	The ratio	between change in volume of mate	rial to its o	original volume is :
	(A)	Volumetric strain	(B)	Bulk modulus
	(C)	Modulus of rigidity	(D)	Modulus of elasticity
16.	The elast	ic constants are		
		lulus of rigidity		
	()	tor of safety		
	. ,	k modulus ng's modulus		
	(IV) 10u (A)	Only (i)	(B)	Only (i) and (ii)
	(A) (C)	Only (i), (ii) and (iii)	(D) (D)	Only (i), (iii) and (iv)
	(0)		(D)	
17.	Shear str	ess = × shear strain.		
	(A)	Young's modulus	(B)	Bulk modulus

(C) Poisson's ratio

(D) Modulus of rigidity

Α

18.	The	unit (of Poisson's ratio is :		
		(A)	Ν	(B)	N/mm ²
		(C)	No unit	(D)	None of these
19.	Shea	ar stre	ess/Shear strain =		
		(A)	Ν	(B)	E
		(C)	К	(D)	е
20.	Whie	ch of t	the following has the same unit of mo	dulus o	f rigidity?
		(A)	Poisson's ratio	(B)	Young's modulus
		(C)	Strain	(D)	Factor of safety
21.	Whie	ch of t	the following statement is/are correct	about s	strain energy?
	(i)	It is	the potential energy stored by an ela	stic bod	y when deformed.
	(ii)	A co	mpressed spring possesses strain ene	ergy.	
		(A)	Only (i)	(B)	Only (ii)
		(C)	All of the above (i) and (ii)	(D)	Both (i) and (ii) are not correct
22.	Whie	ch of t	the following statement is/are correct	about S	Strain energy?
	(i)	Stra	in energy stored is due to gradually a	upplied 2	load
	(ii)		in energy stored is due to suddenly a		
	(iii)		in energy stored is due to load with a		
		(A)	Only (i)	(B)	Only (ii)
		(C)	All of the above (i), (ii) and (iii)	(D)	Only (i) and (ii)
23.	The	total	strain energy stored in a body is know	vn as :	
		(A)	Stress	(B)	Resilience
		(C)	Proof resilience	(D)	None of these
24.	The	maxi	mum strain energy stored in a body is	s known	as:
		(A)	Stress	(B)	Resilience
		(C)	Proof resilience	(D)	None of these
25.	Whie	ch of t	the following statement is/are correct	about I	Proof resilience?
	(i)	It is	the capacity of a strained body for do	ing wor	k on the removal of the straining force.
	(ii)		the quantity of strain energy stored i		-
	(iii)	It is	the Resilience of a material per unit	volume	

- (A) Only (i) (B) All of the above (i), (ii) and (iii)
- (C) Only (i) and (ii) (D) Only (ii)
- A

- 26. Which of the following statement is/are correct about Modulus of resilience?
 - (i) It is the capacity of a strained body for doing work on the removal of the straining force.
 - (ii) It is the quantity of strain energy stored in a body when strained upto elastic limit.
 - (iii) It is the proof Resilience of a material per unit volume.
 - (A) Only (i) (B) Only (ii)
 - (C) Only (iii) (D) All of the above (i), (ii) and (iii)
- **27.** In which types of loading the load is constant throughout the process of the deformation of the body?
 - (A) Gradually applied load (B) Suddenly applied load
 - (C) Load with impact (D) None of these
- **28.** The capacity of a strained body for doing work on the removal of the straining force is known as :
 - (A) Stress(B) Resilience(C) Proof resilience(D) None of these
- **29.** Which of the following statement is/are correct about types of loading?
 - (i) The maximum stress induced in a body due to suddenly applied load is twice the stress induced when the same load is applied gradually.
 - (ii) The extension produced in a rod due to impact load is very small in comparison with the height through which the load falls.
 - (iii) In gradually applied loading the load is constant throughout the process of the deformation of the body.
 - (A) Only (i) and (iii) (B) Only (ii) and (iii)
 - (C) Only (i) and (ii) (D) All of the above (i), (ii) and (iii)
- **30.** Which one of the following is correct for proof resilience?
 - (A) $(\sigma^* \text{volume})/2E$ (B) $2E/(\sigma^{2*} \text{volume})$
 - (C) $(\sigma^* \text{volume}^2)/2E$ (D) $(\sigma^2 \text{volume})/2E$
- 31. Which of the following statement is/are correct about centre of gravity of a rectangle?
 - (i) It is at the point where its diagonals meet each other.
 - (ii) It is a middle point of the length as well as the breadth of the rectangle.
 - (A) Only (i) (B) Only (ii)
 - (C) Both (i) and (ii) (D) None of the above
- 062/2024

- **32.** What is the centre of gravity of a triangle?
 - (A) It is the point where the three medians of triangle meet
 - (B) 1/3 of its height
 - (C) 1/2 of its height
 - (D) None of these
- **33.** What is the centre of gravity of a semi circle?
 - (A) at a distance $(r/3\pi)$ of from its base measured along vertical radius
 - (B) at a distance $(4r/3\pi)$ of from its base measured along vertical radius
 - (C) at a distance $(4r/\pi)$ of from its base measured along vertical radius
 - (D) at a distance $(r/4\pi)$ of from its base measured along vertical radius
- 34. Which of the following statement is/are correct about centre of gravity?
 - (i) The centre of gravity of a circle is its centre.
 - (ii) The centre of gravity of a right circular cone is at a 1/3 distance of from its base.
 - (iii) The centre of gravity of a right circular cone is at a 1/4 distance of from its base.
 - (A) Only (i) and (ii) (B) Only (ii) and (iii)
 - (C) Only (i) and (iii) (D) All of the above (i), (ii) and (iii)
- 35. Which of the following statement is/are correct about moment of inertia?
 - (i) The moment of the moment of a force is called as moment of inertia.
 - (ii) Unit of moment of inertia is m⁴.
 - (iii) Routh's rule is used to find out moment of inertia.
 - (A) Only (i) (B) Only (ii)
 - (C) Only (i) and (ii) (D) All of the above (i), (ii) and (iii)
- **36.** The centre of gravity of an equilateral triangle with each side (*a*) is ______ from any of the three sides.
 - (A) $(a\sqrt{3})/2$ (B) $(a\sqrt{2})/3$ (C) $2/(a\sqrt{3})$ (D) $(a/2\sqrt{3})$

37. Which one of the following is moment of inertia of a rectangular section?

(A)	bd³/12	(B)) $bd^{2}/12$	2

- (C) $bd^{3}/6$ (D) $bd^{2}/6$
- 38. The theorem of perpendicular axis is used for obtaining the moment of inertia of :
 - (A) Square lamina (B) Rectangular lamina
 - (C) Triangular lamina (D) Circular lamina

Α

39. Which of the following statement is/are correct about the Parallel axis theorem?

- (i) Used for obtaining the moment of inertia of circular lamina.
- (ii) Used for obtaining the moment of inertia of semi circular lamina.
- (iii) Used for obtaining the moment of inertia of square lamina.
 - (A) Only (i) (B) Only (ii)
 - (C) Only (iii) (D) All of the above (i), (ii) and (iii)

40. The moment of inertia of a circular section of diameter (d) is :

- (A) $\pi d^{3}/64$ (B) $\pi d^{4}/64$
- (C) $\pi d^4/32$ (D) None of the above
- **41.** What object is used to design to support the roof covering or ceiling over long spans thereby avoiding the intermediate column?

(A) Fink truss	(B)	Fan truss
----------------	-----	-----------

- (C) Pratt truss (D) All of the above
- 42. Which member carries mainly tensile force?
 - (A) Beams (B) Plates
 - (C) Torsion member (D) Tension member
- **43.** When vertical supports of circular cross section and of approximately cylindrical form, it is known as :

(A)	Column	(B)	Beam
(C)	Span	(D)	Wire rope

44. What is the name of the structure in which components such as beam, column and footing are monolithic in design and construction?

(A)	Rigid frame	(B)	Non-portal frame
(C)	Portal frame	(D)	Gabled frame

- **45.** What are the components of plate griders given below?
 - (i) Web plate
 - (ii) Flange plate
 - (iii) Flange spice
 - (iv) Lintel

(A)	(iii) and (iv)	(B)	(ii) and (iv)
	(*) (**) 1 (***)		

(C) (i), (ii) and (iii) (D) (i) and (iv)

062/2024

46.	What is t	he advantage of cold former steel memb	pers ov	ver reinforced concrete?
	(A)	Economical		
	(B)	Termite – proof and rot proof		
	(C)	Shrinking and creeping at temperatu	re	
	(D)	Less accurate detailing		
47.	A structu	ral member which primarily transmits	a com	pressive force is called :
	(A)	Beam	(B)	Column
	(C)	Rivet	(D)	None of these
48.	What is t	he main advantage of Structural Steel?		
	(A)	Maintenance cost	(B)	Slowly erection
	(C)	Fire proofing cost	(D)	High strength
49.		he minimum distance between centres of the rivet?	of any	v two adjacent rivet hole to the nominal
	(A)	1.00 times	(B)	1.50 times
	(C)	2.00 times	(D)	2.50 times
50.	Which spa	an the plate griders are used?		
	(A)	More than 5 m	(B)	More than 20 m
	(C)	More than 15 m	(D)	More than 10 m
51.	The struc the axis is		a syst	tem of external loads at right angles to
	(A)	Beam	(B)	Point load
	(C)	Distributed load	(D)	Column
52.	In a simp	ly supported beam, bending moment at	supp	orts is always :
	(A)	Negative	(B)	Zero
	(C)	Positive	(D)	None of these
53.	For a sim	ply supported beam, loaded with point	load t	he B.M. diagram will be :
	(A)	Triangle	(B)	A parabolic curve
	(C)	A Cubic Curve	(D)	Rectangle
54.	The B.M	diagram for a cantilever with point load	l at th	e free end will be :
	(A)	A triangle with maximum height und	er fre	e end
	(B)	A triangle with maximum height und	er fixe	ed end
	(C)	A parabolic curve		
	(D)	An ellipse		

A

55.	. For a simply supported beam of span 'l' loaded with uniformly distributed load w/m over the whole span the maximum B.M will be :			uniformly distributed load w/m over the
	(A)	<i>wl</i> /4	(B)	wl^2 / 8
	(C)	wl^2 / 4	(D)	$wl^2/2$
56.	At the poi	int of contraflexure :		
	(A)	B.M is minimum	(B)	B.M is Maximum
	(C)	B.M is either zero or changes sign	(D)	None of these
57.	Name the	type of beam whose one end is fixed a	nd the	other end free:
	(A)	Cantilever beam	(B)	Simply supported beam
	(C)	Over hanging beam	(D)	Fixed beam
58.	A bending	g moment causing concavity upwards v	vill be	taken as:
	(A)	Positive	(B)	Negative
	(C)	Zero	(D)	None of these
59.		he shape of the bending moment diag distributed load?	gram (over the length of the beam carrying a
	(A)	Parabolic	(B)	Linear
	(C)	Circular	(D)	Cubical
60.	Which typ these sup		oints ł	nas one or both ends extending beyond
	(A)	Cantilever beam	(B)	Fixed beam
	(C)	Overhanging beam	(D)	Simply supported beam
61.	Which typ	pe of column is likely to fail due to bucl	kling r	ather than material yielding?
	(A)	Intermediate column	(B)	Long column
	(C)	Short column	(D)	Thick column
62.	A column considere		ation (L/r) less than a certain critical value is
	(A)	Intermediate	(B)	Long
	(C)	Short	(D)	Slender
63.	Which typ	pe of column failure occurs due to exces	ssive a	xial compression?
	(A)	Buckling	(B)	Yielding
	(C)	Torsion	(D)	Shear
0.00	19094	10		

A

- According to Euler's formula, the critical buckling load of a column is inversely proportional **64**. to the :
 - (A) Cross-sectional area of the column
 - (B) Density of the column material
 - (C) Length of the column
 - Modulus of elasticity of the column material (D)
- Which property of the column is used to calculate the radius of gyration in Euler's formula? **65**.
 - (A) Moment of inertia (B) Poisson's ratio
 - (C) Yield strength (D) Young's modulus
- 66. What does an effective length factor of 0.5 signify for a column?
 - (A) Both ends are fixed
 - Both ends are free (B)
 - One end is fixed, and the other end is free (C)
 - One end is fixed, and the other end is pinned (D)
- **67**. Which type of column will typically have the smallest effective length factor?
 - (A) Fixed-fixed (B) Hinged-fixed
 - Fixed-ended (C) (D) Hinged-hinged

68. Which factor does not affect the slenderness ratio of a column?

- (A) Cross-sectional area Length (B)
- (C) Material strength Load applied (D)

69. Rankine's formula is commonly applied in the field of :

- (A) Aerospace engineering (B)
 - (C) Structural engineering (D)

70. Johnson's formula is based on the assumption that materials :

- (A) Deform plastically under load
- (C) Have isotropic properties

71. What unit is typically used to measure beam deflection?

- (A) Newton (N)
- (C) Pascal (Pa) (D) Millimeter (mm)

11

- 72. In cantilever beams, the deflection is zero at
 - At supports (A)
 - (C) Free end
- (B) Fixed end

Meter (m)

- (D) Through out
- 062/2024 [P.T.O.]

Α

- Chemical engineering
- **Electrical engineering**

(B)

- - (B) Exhibit linear elasticity
 - Remain within the elastic limit (D)

73.	Which of the following is a common method for connecting the different materials in a composite beam?			
	(A)	Welding	(B)	Bolting
	(C)	Adhesive bonding	(D)	Riveting
74.	Which the bending?	eory is commonly used to analyze the	e beha	viour of composite beams subjected to
	(A)	Hooke's law	(B)	Mohr's circle
	(C)	Euler-Bernoulli beam theory	(D)	Timoshenko beam theory
75.	In a fixed	beam, the rotation at the support is :		
	(A)	Indeterminate	(B)	Permitted
	(C)	Restricted	(D)	Zero
76.	The deflee	ction of a fixed beam is maximum at :		
	(A)	Center	(B)	Support
	(C)	Quarter-span	(D)	Midspan
77.	Continuo	us beams are characterized by having :		
	(A)	Fixed supports at both ends	(B)	Multiple supports along their length
	(C)	Single support at each end	(D)	Uniform load distribution
78.	The curva	ture of a continuous beam is		
	(A)	Constant	(B)	Linearly varying
	(C)	Maximum at midspan	(D)	Zero
79.	Which ma	terial property primarily affects the de	eflectio	on of a beam?
	(A)	Yield strength	(B)	Thermal conductivity
	(C)	Elastic modulus	(D)	Density
80.		ntilever beam subjected to a uniform usually located?	ly dis	tributed load, where is the maximum
	(A)	At the point of maximum load	(B)	At the midspan
	(C)	At the free end	(D)	At the fixed end
81.	The hollow	w shaft will transmit greater	tha	an the solid shaft of the same weight.
	(A)	Sectional modulus	(B)	Torque
	(C)	Bending moment	(D)	Shear stress

82.		ent of inertia of a plane area w ar moment of inertia.	ith respect	to an axis	_ to the plane is
	(A)	Perpendicular	(B)	Parallel	
	(C)	Equal	(D)	Opposite	
		-			
83.	The power	r transmitted by shaft in SI syste	m is given b	ру:	
	(A)	$3\pi NT/60$	(B)	$2\pi NT/50$	
	(C)	$2\pi NT/60$	(D)	2πNT/30	
84.		is a measure of the strength	of shaft on	rotation	
010	(A)	Torsional rigidity	(B)	Torsional modulus	
	(C)	Sectional modulus	(D)	Polar modulus	
85.		oil helical spring is cut into two red to the original spring will be :		. The stiffness of each	resulting spring
	(A)	double	(B)	same	
	(C)	1/4	(D)	$\frac{1}{2}$	
86.	The ratio	of polar moment of inertia to the	radius of th		
	(A)	Flexural rigidity	(B)	Shaft stiffness	
	(C)	Torsional section modulus	(D)	Torsional rigidity	
87.	A spring spring wil	of stiffness constraint K is cut in l be :	nto two equ	al parts. The stiffness	constant of new
	(A)	K/2	(B)	2K	
	(C)	3K	(D)	K/3	
00		h . C. 11	· · · · · · · · · · · · · · · · · · ·		
88.		the following function can be the		Measure force	
	(A) (C)	Store energy Absorb shock	(B) (D)	All of the above	
	(\mathbf{C})	Absorb shock	(D)	All of the above	
89.	When two	dissimilar shafts are connected t	together, the	en the shaft is :	
	(A)	Composite shafts	(B)	Differential shafts	
	(C)	Combined shafts	(D)	Integrated shafts	
90.	When e al	oft applicated to pupe twisting th	on the true	of strass developed is	
90.	(A)	naft subjected to pure twisting, th Normal	(B)	Axial	
	(A) (C)	Shear	(D) (D)	Bending	
	(\mathbf{C})	Silear	(D)	Denuing	
91.	Bending t	est are conducted to ensure that	the materia	l has enough :	
	(A)	impact	(B)	ductility	
	(C)	force	(D)	hardness	
Α			13		062/2024
			-		

62/2024 [P.T.O.]

92.	Which fer	rous metal doesn't show fatigue limit?		
	(A)	Austenitic stainless steel	(B)	Cast iron
	(C)	Wrought iron	(D)	Low carbon steel
93.	What is th	ne v notch angle found on an impact tes	sting r	nachine?
	(A)	60°	(B)	90°
	(C)	45°	(D)	30°
94.	Compress	ion test is done on which of the followir	ng ma	terials?
	(A)	Aluminium	(B)	Gold
	(C)	Silver	(D)	Cast iron
95.	Brinell nu	umber of a material or an alloy is a mea	sure o	of its :
	(A)	hardness	(B)	tensile strength
	(C)	toughness	(D)	malleability
96.	The direct	t shear test can also be called as :		
	(A)	strain controlled shear box test	(B)	simple shear test
	(C)	stress test	(D)	All of the above
97.	Pick the o	dd one out		
	(A)	Resilience	(B)	Endurance limit
	(C)	Elastic strength	(D)	Stiffness
98.	Fatigue cu	urves are popularly known as :		
	(A)	R	(B)	S
	(C)	S-N	(D)	Ν
99.	Percentag	e elongation during tensile test is indic	ative	of :
	(A)	Malleability	(B)	Elasticity of the metal
	(C)	Creep	(D)	Ductility
100.	Shearing	resistance can be determined in the lab	orato	ry by methods.
	(A)	4	(B)	5
	(C)	2	(D)	3

A

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK