MOCK BASED ON PATTERN ASKED IN FIRST DAY OF IBPS CLERK MAINS 2016 QUANTITATIVE APTITUDE
41. (4)
42. (5)
43. (1)
44. (3)
45. (5)
46. (2)
47. (4)
48. (2)
49. (3)
50. (1)
51. (2)
52. (4)
53. (3)
54. (1)
55. (5)
56. (2) Let shyam's Contribution = ' x ' Rs.
\therefore Ratio of their investment in 4 years
$=6500 \times 4 \times 12: \mathrm{X} \times 40$
$13: 12=7800: X$
$\therefore \mathrm{x}=\frac{12}{13} \times 7800=7200$ Rs.
57. (3) Total distance $=$ Resultant velocity \times Time
$=(20+4) \times \frac{30}{60}=24 \times \frac{1}{2}=12 \mathrm{~km}$.
58. S. I after 20 years $=\frac{2000 \times 20 \times 10}{100}=4000$
\therefore New principle $=2000+4000=6000$
Now, Let after ' t ' years the amount become
$14000-6000=8000$
$8000=\frac{6000 \times \mathrm{T} \times 10}{100}$
\therefore Time $\mathrm{t}=\frac{8000 \times 100}{6000 \times 10}=\frac{40}{3}$ years.
\therefore Total time $=20+\frac{40}{3}=\frac{100}{3}=33 \frac{1}{3}$ years
59. (1) Total distance $=128+122=250$ meter

And Resultant Velocity $=48+42=90 \mathrm{~km}$

$$
=90 \times \frac{5}{18}=25 \mathrm{~m} / \mathrm{s} .
$$

\therefore Time to cross each other $=\frac{250}{25}=10$ Second
60. (2) Let speed of boat be ' v ' and, of stream be ' x '

For downstream, $V+U=\frac{28}{7}=4 \mathrm{~km} / \mathrm{hr}-$ (I)
\& for ups stream, $\mathrm{V}-\mathrm{U}=\frac{28}{14}=2 \mathrm{~km} / \mathrm{hr}$
From (I) \& (II),
$\mathrm{V}=3 \mathrm{~km} / \mathrm{hr}$.
61. (3) Let cost price be $=$ ' x ' Rs.
$\therefore \mathrm{S} . \mathrm{P}=\mathrm{X} \times \frac{116}{100} \times \frac{125}{100}=\frac{29 \mathrm{x}}{20}$
\therefore Profit $\%=\frac{\frac{24 \mathrm{x}}{20}-\mathrm{x}}{\mathrm{x}} \times 100$
$=\frac{9 \mathrm{x}}{20 \times \mathrm{x}} \times 100=45 \%$
62. (5); Interest on Rs. 2410 for 1 year $=2651-2410=$ 241
\therefore Rate $=\frac{100 \times 241}{2410}=10 \%$ P.A.
Letthe sum be x.
\therefore Amount in 3 years $=\mathrm{x} \times\left(1+\frac{10}{100}\right)^{3}=2410$
$\therefore \mathrm{x}=2410 \times \frac{10}{11} \times \frac{10}{11} \times \frac{10}{11}=$ Rs. 1811
63. (4); Average speed $=\frac{2 x y}{x+y}=\frac{2 \times 60 \times 45}{60+45}=51.42 \mathrm{kmph}$
64. (4); Speed of trains $=\frac{120}{8}=15 \mathrm{~m} / \mathrm{sec}$
and $\frac{90}{6}=15 \mathrm{~m} / \mathrm{sec}$
\therefore Relative speed $=15+15=30 \mathrm{~m} / \mathrm{sec}$
\therefore Time $=\frac{120+90}{30}=\frac{210}{30}=7$ seconds
65. (2); Let the required distance be x km .
$\therefore \frac{x}{50}-\frac{x}{60}=7$
$\Rightarrow \frac{6 x-5 x}{300}=7$
$\therefore \mathrm{x}=300 \times 7=2100 \mathrm{~km}$
66. (1) time taken by both together $=3$ hours
67. (4) Let the original price be Rs 100.

So he bought it at 10% discount i.e. Rs 90 and sells
it at 35% more than the original rate i.e. Rs 135.
Actual profit is $135-90=$ Rs 45
$\therefore \%$ profit $=\frac{45}{90} \times 100=50 \%$
68. (2); Area $=(\text { side })^{2}=3136$

Side=56
Perimeter of square $=56 \times 4$
$\mathrm{R}=$ Radius of circle $=\frac{56 \times 4}{2}=112$
Circumference $=2 \times \frac{22}{7} \times 112=704$
69. (1); Circumference of circle $=\frac{3300}{15}=220$
$2 \pi r=220$
$r=35$
Area $=\pi r^{2}=3850$
Cost $=3850 \times 100=385000$
70. (2); Area of Circle $=2 \pi r$
$=2 \times \frac{22}{7} \times 14=616$
$l \times b=616$
$l=\frac{616}{22}=28$
71. (1); Difference between number are $62,30,14,6,2$
72. (2); $4 \times 1+2=6$
$6 \times 2+2=14$
$14 \times 3+2=44$
$44 \times 4+2=178$
$178 \times 5+2=892$
73. (4); $1 \times 2=2$
$2 \times 4=8$
$8 \times 6=48$

$$
4 \times 8=384
$$

74. (2); These are two series mix 15, 20,25 , 20...........and 34, 39, 43
75. (1); $16 \times 0.5=8,8 \times 1.5=12,12 \times 2.5=30,30 \times$ $3.5=105,105 \times 4.5=472.5$
76. (4); $114: 138=19: 23$
77. (2)
78. (5)
79. (4)
80. (1); 85 (approx)
